Front propagation in a transport model with a nonlocal nonlinear condition at the boundary

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier

Joint work with G. Faye and M. Zhang

Model and question

Unknown function: u(t, x, i); t > 0, i > 0, $x \in \mathbb{R}$

$$\begin{cases} \partial_t u + \partial_i u = -\gamma(i)u & (t > 0, x \in \mathbb{R}, i > 0) \\ u(t, x, 0) = f\left[\int_0^{+\infty} \beta(i)K *_x u(t, ., i) di\right]. \\ u(0, x, i) = u_0(x, i) \text{ compactly supported in } (x, i) \end{cases}$$

I ≥ ▶

Unknown function: u(t, x, i); t > 0, i > 0, $x \in \mathbb{R}$

$$\begin{cases} \partial_t u + \partial_i u = -\gamma(i)u & (t > 0, x \in \mathbb{R}, i > 0) \\ u(t, x, 0) = f\left[\int_0^{+\infty} \beta(i)K *_x u(t, ., i) di\right]. \\ u(0, x, i) = u_0(x, i) \text{ compactly supported in } (x, i) \end{cases}$$

-
$$f(0) = 0$$
; $f(u) > 0$, $f''(u) < 0$ for $u > 0$.

— $K(x) \ge 0$, C^{∞} , even, compact support, unit mass.

— $\beta(i) \ge 0$, $\gamma(i) > 0$, both C^{∞} w. compact support.

Sharp asymptotic behaviour $t \to +\infty$?

• • = • • = •

Motivations

 Take a fresh look at an old, important, and much studied model initially devised for the spatial spread of epidemics.

Motivations

- Take a fresh look at an old, important, and much studied model initially devised for the spatial spread of epidemics.
- Front propagation expected to be of the Fisher-KPP type.

Motivations

- Take a fresh look at an old, important, and much studied model initially devised for the spatial spread of epidemics.
- Front propagation expected to be of the Fisher-KPP type.

Outline

- The Fisher-KPP equation
- Derivation of the model
- What to expect, kown results
- Sharp asymptotic behaviour

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier

æ

A.N. Kolmogorov (1903-1987) I.G. Petrovskii (1901-1973) N.S. Piskunov (1908-1977)

$$\left\{\begin{array}{ll} u_t-u_{xx}=&u-u^2\quad(t>0,x\in\mathbb{R})\\ u(0,x)=&u_0(x)\in[0,1] \text{ w. compact support}\end{array}\right.$$

A.N. Kolmogorov (1903-1987) I.G. Petrovskii (1901-1973) N.S. Piskunov (1908-1977)

$$\left\{ \begin{array}{rl} u_t-u_{xx}=&u-u^2\quad(t>0,x\in\mathbb{R})\\ u(0,x)=&u_0(x)\in[0,1] \text{ w. compact support} \end{array} \right.$$

Global smooth solution $u(t,x) \in (0,1)$. $\dot{u} = u - u^2$ pushes solution to 1, diffusion spreads it

A.N. Kolmogorov (1903-1987) I.G. Petrovskii (1901-1973) N.S. Piskunov (1908-1977)

$$\left\{ \begin{array}{rl} u_t-u_{xx}=&u-u^2\quad(t>0,x\in\mathbb{R})\\ u(0,x)=&u_0(x)\in[0,1] \text{ w. compact support} \end{array} \right.$$

Global smooth solution $u(t,x) \in (0,1)$. $\dot{u} = u - u^2$ pushes solution to 1, diffusion spreads it

Invasion of whole line by the state u = 1.

Invasion by state u = 1: mathematical description

X(t): furthest point x to right s.t. u(t,x) = 1/2

X(t): furthest point x to right s.t. u(t,x) = 1/2Theorem. (KPP, 1937). $X(t) = 2t + o_{t \to +\infty}(t)$.

Invasion by state u = 1: mathematical description

X(t): furthest point x to right s.t. u(t,x) = 1/2Theorem. (KPP, 1937). $X(t) = 2t + o_{t \to +\infty}(t)$. Theorem. (Bramson, 1980). $o(t) = 2t - \frac{3}{2} \ln t + x_{\infty} + o_{t \to +\infty}(1)$. X(t): furthest point x to right s.t. u(t,x) = 1/2Theorem. (KPP, 1937). $X(t) = 2t + o_{t \to +\infty}(t)$. Theorem. (Bramson, 1980). $o(t) = 2t - \frac{3}{2} \ln t + x_{\infty} + o_{t \to +\infty}(1)$.

Origin of the 2t

- 0 "most unstable value" of $\dot{u} = u u^2$. \implies Dynamics driven by small values of u.
- Linear equation around u = 0: $w_t w_{xx} w = 0$.

X(t): furthest point x to right s.t. u(t,x) = 1/2Theorem. (KPP, 1937). $X(t) = 2t + o_{t \to +\infty}(t)$. Theorem. (Bramson, 1980). $o(t) = 2t - \frac{3}{2} \ln t + x_{\infty} + o_{t \to +\infty}(1)$.

Origin of the 2t

- 0 "most unstable value" of $\dot{u} = u u^2$.
 - \implies Dynamics driven by small values of u.
- Linear equation around u = 0: $w_t w_{xx} w = 0$.
- Real solutions (Linear waves) $w(t, x) = e^{-\lambda(x-ct)}$ iff $c \ge c_* = 2$.

As f is concave, do we have this sort of behaviour in mode under study?

X(t): furthest point x to right s.t. u(t,x) = 1/2Theorem. (KPP, 1937). $X(t) = 2t + o_{t \to +\infty}(t)$. Theorem. (Bramson, 1980). $o(t) = 2t - \frac{3}{2} \ln t + x_{\infty} + o_{t \to +\infty}(1)$.

Origin of the 2t

- 0 "most unstable value" of $\dot{u} = u u^2$.
 - \implies Dynamics driven by small values of u.
- Linear equation around u = 0: $w_t w_{xx} w = 0$.
- Real solutions (Linear waves) $w(t, x) = e^{-\lambda(x-ct)}$ iff $c \ge c_* = 2$.

As f is concave, do we have this sort of behaviour in mode under study?

Epidemiological relevance questionnable, but interesting mathematical issues

Derivation of the model

Derivation of the model

Modelling of spread of an epidemic needs, at the very least:

- A contamination mechanism
- A diffusion process.

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

コト 4 四 ト 4 目 ト 4 目 ・ つへで

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Assumptions

- # new infections \propto (# susceptibles)×(# already infected).
- Infectivity $\beta(i)$ and removal $\gamma(i)$ depend on infection duration.

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Assumptions

- # new infections \propto (# susceptibles)×(# already infected).
- Infectivity $\beta(i)$ and removal $\gamma(i)$ depend on infection duration.

Equations

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Assumptions

- # new infections \propto (# susceptibles)×(# already infected).
- Infectivity $\beta(i)$ and removal $\gamma(i)$ depend on infection duration.

Equations

• S(t): # susceptibles, $\mathcal{I}(t, i)$: density of infected for duration *i*.

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Assumptions

- # new infections \propto (# susceptibles)×(# already infected).
- Infectivity $\beta(i)$ and removal $\gamma(i)$ depend on infection duration.

Equations

- S(t): # susceptibles, $\mathcal{I}(t, i)$: density of infected for duration *i*.
 - Removal of infected: $\partial_t \mathcal{I} + \partial_i \mathcal{I} = -\gamma(i)\mathcal{I}$.

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Assumptions

- # new infections \propto (# susceptibles)×(# already infected).
- Infectivity $\beta(i)$ and removal $\gamma(i)$ depend on infection duration.

Equations

- S(t): # susceptibles, $\mathcal{I}(t, i)$: density of infected for duration *i*.
 - Removal of infected: $\partial_t \mathcal{I} + \partial_i \mathcal{I} = -\gamma(i)\mathcal{I}$.
 - Arrival of new infected: $\mathcal{I}(t,0) = S(t) \int_{0}^{+\infty} \beta(i) \mathcal{I}(t,i) di$.

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Assumptions

- # new infections \propto (# susceptibles)×(# already infected).
- Infectivity $\beta(i)$ and removal $\gamma(i)$ depend on infection duration.

Equations

- S(t): # susceptibles, $\mathcal{I}(t, i)$: density of infected for duration *i*.
 - Removal of infected: $\partial_t \mathcal{I} + \partial_i \mathcal{I} = -\gamma(i)\mathcal{I}$.
 - Arrival of new infected: $\mathcal{I}(t,0) = S(t) \int_{0}^{+\infty} \beta(i) \mathcal{I}(t,i) di$.
 - Update of susceptibles: $\dot{S} = -\mathcal{I}(t, 0)$.

At t = 0, injection of small amount of infected $I_0(i)$.

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier

▶ ∢ ≣

$$I(t) = \int_0^{+\infty} \mathcal{I}(t, i) \ di \ (\text{density of infected at time } t).$$

$$I(t) = \int_0^{+\infty} \mathcal{I}(t, i) \, di \text{ (density of infected at time } t).$$

$$\dot{S} = -\beta SI, \quad \dot{I} = \beta SI - \gamma I, \quad S(0) = S_0, \ I(0) = I_0.$$

 $I(t) = \int_0^{+\infty} \mathcal{I}(t, i) \, di \text{ (density of infected at time } t).$ $\dot{S} = -\beta SI, \quad \dot{I} = \beta SI - \gamma I, \quad S(0) = S_0, \ I(0) = I_0.$ Cumulative density: $u(t) = \int_0^t I(s) ds. \ \dot{u} = S_0(1 - e^{-\beta u}) - \gamma u + I_0.$

Define $R_0 = S_0 \beta / \gamma$.

 $I(t) = \int_0^{+\infty} \mathcal{I}(t, i) \, di \text{ (density of infected at time } t).$ $\dot{S} = -\beta SI, \quad \dot{I} = \beta SI - \gamma I, \quad S(0) = S_0, \ I(0) = I_0.$ Cumulative density: $u(t) = \int_0^t I(s) ds. \quad \dot{u} = S_0 (1 - e^{-\beta u}) - \gamma u + I_0.$

Define $R_0 = S_0 \beta / \gamma$.

- $R_0 \leq 1$: $u(t) \rightarrow u_{\infty}(I_0)$ small (extinction).

- $R_0>1$: $u(t)
ightarrow u_\infty(I_0)>u_\infty$. Susceptibles $ightarrow S_0 e^{-eta u_\infty(I_0)}$.

Cumulative densities $u(t,i) = \int_0^t \mathcal{I}(s,i) \, ds$. Denote $f(u) = S_0(1 - e^{-u})$.

Cumulative densities $u(t,i) = \int_0^t \mathcal{I}(s,i) \, ds$. Denote $f(u) = S_0(1 - e^{-u})$.

$$\partial_t u + \partial_i u = -\gamma(i)u + I_0(i), \quad u(t,0) = f\left(\int_0^{+\infty} \beta(i)u(t,i) di\right).$$

Cumulative densities $u(t,i) = \int_0^t \mathcal{I}(s,i) \, ds$. Denote $f(u) = S_0(1-e^{-u})$.

$$\partial_t u + \partial_i u = -\gamma(i)u + I_0(i), \quad u(t,0) = f\left(\int_0^{+\infty} \beta(i)u(t,i) di\right).$$

Proposition. Set $R_0 = S_0 \int_0^{+\infty} \beta(i) e^{-\int_0^i \gamma(j) dj} di$. If $R_0 > 1$,

- there is a unique nontrivial steady state $u_{\infty}(i)$.

Cumulative densities $u(t,i) = \int_0^t \mathcal{I}(s,i) \, ds$. Denote $f(u) = S_0(1 - e^{-u})$.

$$\partial_t u + \partial_i u = -\gamma(i)u + I_0(i), \quad u(t,0) = f\left(\int_0^{+\infty} \beta(i)u(t,i) di\right).$$

Proposition. Set $R_0 = S_0 \int_0^{+\infty} \beta(i) e^{-\int_0^i \gamma(j) dj} di$. If $R_0 > 1$,

- there is a unique nontrivial steady state $u_{\infty}(i)$.

- We have
$$\lim_{t \to +\infty} u(t, i) = u_{\infty}(i)$$
, and
 $\lim_{t \to +\infty} S(t) = S_0 \exp\left(-\int_0^{+\infty} \beta(i)u_{\infty}(i) di\right).$

Cumulative densities $u(t,i) = \int_0^t \mathcal{I}(s,i) \, ds$. Denote $f(u) = S_0(1-e^{-u})$.

$$\partial_t u + \partial_i u = -\gamma(i)u + I_0(i), \quad u(t,0) = f\left(\int_0^{+\infty} \beta(i)u(t,i) di\right).$$

Proposition. Set $R_0 = S_0 \int_0^{+\infty} \beta(i) e^{-\int_0^i \gamma(j) dj} di$. If $R_0 > 1$,

- there is a unique nontrivial steady state $u_{\infty}(i)$.

- We have
$$\lim_{t \to +\infty} u(t, i) = u_{\infty}(i)$$
, and
 $\lim_{t \to +\infty} S(t) = S_0 \exp\left(-\int_0^{+\infty} \beta(i)u_{\infty}(i) di\right).$

Remark. Def. of R_0 consistent w. β and γ constant.

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier

æ

SIR and Kermack-McKendrick have no spatial spread mechanism.

SIR and Kermack-McKendrick have no spatial spread mechanism.

— Infectivity range (Kendall, 1957): $\beta SI \rightarrow \beta S K * I$.

 $\partial_t S = -\beta S K * I, \ \partial_t I = \beta S K * I - \gamma I$

SIR and Kermack-McKendrick have no spatial spread mechanism.

— Infectivity range (Kendall, 1957): $\beta SI \rightarrow \beta S K * I$.

$$\partial_t S = -\beta S K * I, \ \partial_t I = \beta S K * I - \gamma I$$

D.G. Kendall (1918-2007)

SIR and Kermack-McKendrick have no spatial spread mechanism.

— Infectivity range (Kendall, 1957): $\beta SI \rightarrow \beta S K * I$.

 $\partial_t S = -\beta S K * I, \ \partial_t I = \beta S K * I - \gamma I$

D.G. Kendall (1918-2007)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Cumulated density of infected at point x: u(t,x). $u_t = S_0(1 - e^{-\beta K * u}) - \gamma u + I_0(x)$

SIR and Kermack-McKendrick have no spatial spread mechanism.

— Infectivity range (Kendall, 1957): $\beta SI \rightarrow \beta S K * I$.

 $\partial_t S = -\beta S K * I, \ \partial_t I = \beta S K * I - \gamma I$

D.G. Kendall (1918-2007)

— Cumulated density of infected at point x: u(t,x).

 $u_t = S_0(1 - e^{-\beta K * u}) - \gamma u + I_0(x)$

- Fisher-KPP type structure: linearised equation. around 0

$$\mathbf{v}_t + S_0\beta(\mathbf{v} - \mathbf{K} * \mathbf{v}) = \gamma(R_0 - 1)\mathbf{v}.$$

S(t,x): susceptibles; $\mathcal{I}(t,x,i)$: infected for duration *i*.

S(t, x): susceptibles; $\mathcal{I}(t, x, i)$: infected for duration *i*.

- Newly infected arrive:

$$\mathcal{I}(t,x,0) = S(t,x) \int_0^{+\infty} \beta(i) K *_x \mathcal{I}(t,.,i) di$$

S(t,x): susceptibles; $\mathcal{I}(t,x,i)$: infected for duration *i*.

- Newly infected arrive: $\mathcal{I}(t,x,0) = S(t,x) \int_{0}^{+\infty} \beta(i)K *_{x} \mathcal{I}(t,.,i)di.$ - Introduce $u(t,x,i) = \int_{0}^{t} \mathcal{I}(s,x,i) ds$; use $\partial_{t}S = -\mathcal{I}(s,0,x)$: $u(t,x,0) = f \left[\int_{0}^{+\infty} \beta(i)K *_{x} u(t,.,i) di \right], \quad f(u) = S_{0}(1-e^{-u}).$

S(t,x): susceptibles; $\mathcal{I}(t,x,i)$: infected for duration *i*.

- Newly infected arrive: $\mathcal{I}(t, x, 0) = S(t, x) \int_{0}^{+\infty} \beta(i) K *_{x} \mathcal{I}(t, ., i) di.$ - Introduce $u(t, x, i) = \int_{0}^{t} \mathcal{I}(s, x, i) ds$; use $\partial_{t} S = -\mathcal{I}(s, 0, x)$: $u(t, x, 0) = f \left[\int_{0}^{+\infty} \beta(i) K *_{x} u(t, ., i) di \right], \quad f(u) = S_{0}(1 - e^{-u}).$

- Equation for $u: u_t + u_i = -\gamma(i)u + \mathcal{I}(0, x, i)$.

S(t,x): susceptibles; $\mathcal{I}(t,x,i)$: infected for duration *i*.

- Newly infected arrive: $\mathcal{I}(t, x, 0) = S(t, x) \int_{0}^{+\infty} \beta(i) K *_{x} \mathcal{I}(t, ., i) di.$ - Introduce $u(t, x, i) = \int_{0}^{t} \mathcal{I}(s, x, i) ds$; use $\partial_{t} S = -\mathcal{I}(s, 0, x)$: $u(t, x, 0) = f \left[\int_{0}^{+\infty} \beta(i) K *_{x} u(t, ., i) di \right], \quad f(u) = S_{0}(1 - e^{-u}).$

- Equation for $u: u_t + u_i = -\gamma(i)u + \mathcal{I}(0, x, i)$.

From then on we will consider the Cauchy Problem, without RHS $\mathcal{I}(0, x, i)$.

What to expect, known results

Kendall model

$$u_t = S_0(1 - e^{-\beta K * u}) - \gamma u$$
 $R_0 > 1.$

 $\lim_{t \to +\infty} u(t,x) = u_{\infty}$, $S_0(1 - e^{-eta u_{\infty}}) - \gamma u_{\infty} = 0$. (Kendall, 1957)

Kendall model

$$u_t = S_0(1 - e^{-\beta K * u}) - \gamma u$$
 $R_0 > 1.$

$$\lim_{t\to+\infty} u(t,x) = u_{\infty}, \ S_0(1-e^{-\beta u_{\infty}}) - \gamma u_{\infty} = 0. \ (\text{Kendall, 1957})$$

Nonlocal transport model

 $\lim_{t \to +\infty} u(t, x, i) = u_{\infty}(i)$, steady solution of Kermack-McKendrick.

æ

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 … のの()

Linear wave: sol. of $v_t + S_0\beta(v - K * v) = \gamma(R_0 - 1)v$, with $v(t, x) = e^{-\lambda(x-ct)}$, $\lambda > 0$, c > 0.

Linear wave: sol. of
$$v_t + S_0\beta(v - K * v) = \gamma(R_0 - 1)v$$
,
with $v(t, x) = e^{-\lambda(x-ct)}$, $\lambda > 0$, $c > 0$.
 $2S_0\beta \int_0^{+\infty} K(y)(\cosh(\lambda y) - 1)dy = c\lambda - \gamma(R_0 - 1)$.

 c_* : least c > 0 such that it is possible, λ_* : corresponding λ .

≣⇒

Linear wave: sol. of $v_t + S_0\beta(v - K * v) = \gamma(R_0 - 1)v$, with $v(t, x) = e^{-\lambda(x-ct)}$, $\lambda > 0$, c > 0. $2S_0\beta \int_0^{+\infty} K(y)(\cosh(\lambda y) - 1)dy = c\lambda - \gamma(R_0 - 1)$.

 c_* : least c > 0 such that it is possible, λ_* : corresponding λ .

X(t): furthest point x to the right s.t. $u(t,x) = u_{\infty}/2$.

Linear wave: sol. of $v_t + S_0\beta(v - K * v) = \gamma(R_0 - 1)v$, with $v(t, x) = e^{-\lambda(x-ct)}$, $\lambda > 0$, c > 0. $2S_0\beta \int_0^{+\infty} K(y)(\cosh(\lambda y) - 1)dy = c\lambda - \gamma(R_0 - 1)$.

 c_* : least c > 0 such that it is possible, λ_* : corresponding λ .

X(t): furthest point x to the right s.t. $u(t,x) = u_{\infty}/2$. Theorem (Aronson, 1977). $R_0 > 1 \implies X(t) = c_*t + o(t)$.

Linear wave: sol. of $v_t + S_0\beta(v - K * v) = \gamma(R_0 - 1)v$, with $v(t, x) = e^{-\lambda(x-ct)}$, $\lambda > 0$, c > 0. $2S_0\beta \int_0^{+\infty} K(y)(\cosh(\lambda y) - 1)dy = c\lambda - \gamma(R_0 - 1)$.

 c_* : least c > 0 such that it is possible, λ_* : corresponding λ .

 $X(t): \text{ furthest point } x \text{ to the right s.t. } u(t,x) = u_{\infty}/2.$ Theorem (Aronson, 1977). $R_0 > 1 \implies X(t) = c_*t + o(t).$ Theorem (R., 2023). There is x_{∞} such that $X(t) = c_*t - \frac{3}{2\lambda_*} \ln t + x_{\infty} + o(t).$

Linear wave: sol. of
$$\begin{cases} \partial_t u + \partial_i u = -\gamma(i)u & (t > 0, x \in \mathbb{R}, i > 0) \\ u(t, x, 0) = f'(0) \int_0^{+\infty} \beta(i)K *_x u(t, ., i) di. \\ \text{with } u(t, x, i) = e^{-\lambda(x - ct)}u(i). \end{cases}$$

Linear wave: sol. of
$$\begin{cases} \partial_t u + \partial_i u = -\gamma(i)u & (t > 0, x \in \mathbb{R}, i > 0) \\ u(t, x, 0) = f'(0) \int_0^{+\infty} \beta(i)K *_x u(t, ., i) di. \\ \text{with } u(t, x, i) = e^{-\lambda(x - ct)}u(i). \end{cases}$$

 c_* : smallest c > 0 such that linear wave exists.

Linear wave: sol. of
$$\begin{cases} \partial_t u + \partial_i u = -\gamma(i)u & (t > 0, x \in \mathbb{R}, i > 0) \\ u(t, x, 0) = f'(0) \int_0^{+\infty} \beta(i)K *_x u(t, ., i) di. \\ \text{with } u(t, x, i) = e^{-\lambda(x - ct)}u(i). \end{cases}$$

 c_* : smallest c > 0 such that linear wave exists.

X(t): furthest point x to the right s.t. $u(t, x, 0) = u_{\infty}/2$.

Linear wave: sol. of
$$\begin{cases} \partial_t u + \partial_i u = -\gamma(i)u & (t > 0, x \in \mathbb{R}, i > 0) \\ u(t, x, 0) = f'(0) \int_0^{+\infty} \beta(i)K *_x u(t, ., i) di. \\ \text{with } u(t, x, i) = e^{-\lambda(x - ct)} u(i). \end{cases}$$

 c_* : smallest c > 0 such that linear wave exists.

X(t): furthest point x to the right s.t. $u(t, x, 0) = u_{\infty}/2$. Theorem (Diekman, Thieme, 1979). $R_0 > 1 \implies X(t) = c_*t + o(t)$.

- \rightarrow Reduction to an integral equation for u(t, x, 0).
- $\rightarrow\,$ Many variants, starting point of monotone systems theory.

Sharp asymptotic behaviour

The result

Theorem (Faye, Zhang, R. 2024). $X(t) = c_* t - \frac{3}{2\lambda_*} \ln t + O(1).$

The result

Theorem (Faye, Zhang, R. 2024). $X(t) = c_* t - \frac{3}{2\lambda_*} \ln t + O(1)$. Starting point: Analogy with "Road-field model" (Berestycki, Rossi, R.)

$$\frac{5}{6}n + n - \chi_{0}n = \frac{5}{6}n - 7 = \frac{5}{6}n - \frac{5}{6}n + n - \frac{5}{6}n + \frac{5}{6}n +$$

The result

Theorem (Faye, Zhang, R. 2024). $X(t) = c_* t - \frac{3}{2\lambda_*} \ln t + O(1)$. Starting point: Analogy with "Road-field model" (Berestycki, Rossi, R.)

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \sqrt{1 + 1} = \frac{1}{2} \sqrt{1 +$$

- Idea: view model as a road-field model instead of integral equation.
- **Common point**: global dynamics directed by line $\{y = 0\}$.
- Main advantage: flexibility with Cauchy Problems.
- Main difference: Boundary condition NOT an evolution equation.

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier

æ

— Comparison principles

- In the whole domain
- In domains of the form $x \ge X(t, i)$ or $x \le X(t, i)$.

- Comparison principles

- In the whole domain
- In domains of the form $x \ge X(t,i)$ or $x \le X(t,i)$.

— Gaussian estimates: For $t^{\delta} \lesssim x - c_* t \lesssim \sqrt{t}$, (Diffusive area),

$$u(t,x,i) \approx \frac{e^{-\lambda_* \left(x-c_*(t-i)\right)}}{t-i} G_* \left(\frac{x-c_*(t-i)}{\sqrt{t-i}}\right), \ \ G_*(\xi) = \xi e^{-\xi^2/d_*}$$

 d_* : an effective diffusivity.

- Comparison principles

- In the whole domain
- In domains of the form $x \ge X(t,i)$ or $x \le X(t,i)$.

— Gaussian estimates: For $t^{\delta} \lesssim x - c_* t \lesssim \sqrt{t}$, (Diffusive area),

$$u(t,x,i) \approx \frac{e^{-\lambda_* \left(x-c_*(t-i)\right)}}{t-i} G_* \left(\frac{x-c_*(t-i)}{\sqrt{t-i}}\right), \ \ G_*(\xi) = \xi e^{-\xi^2/d_*}$$

 d_* : an effective diffusivity.

- Travelling waves: sol. of form $\phi(x - ct, i)$. Existence iff $c \ge c_*$. Also, $\phi_{c_*}(x, i) \underset{x \to +\infty}{\sim} \pi_*(i)xe * -\lambda_*x$.

Closing argument

▲□▶▲□▶▲□▶▲□▶ □ つんの

Closing argument

- Choose $\sigma(t)$ s.t. $u(t, x = c_* t + t^{\delta}, 0) \geq \phi_{c_*}(t^{\delta}, 0).$ $\sigma(t) \approx \frac{3}{2\lambda_*} \ln t + O(1).$

— u(t, x, i) falls eventually between two translates of $\phi_{c_*} \left(x - c_* t - \frac{3}{2\lambda_*} \ln t \right)$

Closing argument

- Choose $\sigma(t)$ s.t. $u(t, x = c_*t + t^{\delta}, 0) \geq \phi_{c_*}(t^{\delta}, 0).$ $\sigma(t) \approx \frac{3}{2\lambda_*} \ln t + O(1).$ - u(t, x, i) falls eventually between two translates of

$$\phi_{c_*}(x-c_*t-rac{3}{2\lambda_*}\ln t)$$

Work in progress

- Location of X(t) with precision $o_{t \to +\infty}(1)$,
- original Kermack-McKendrick model and study of $\mathcal{I}(t, x, i)$.

Thank you!

э