Patrick JOLY¹ Maryna KACHANOVSKA¹ Zoïs MOITIER²

UMA (¹POEMS, ²IDEFIX), ENSTA Paris, IP Paris

November 7, 12024 HE

This research was funded by the ANR RAPID HyBOX.

cubature	\rightarrow	numerical integration			
high order	\rightarrow	fast convergence			
Iterated Function System (IFS)	\rightarrow	fractals (multiscale domain)			

cubature	\rightarrow	numerical integration
high order	\rightarrow	fast convergence

Iterated Function System (IFS) \rightarrow fractals (multiscale domain)

cubature	\rightarrow	numerical integration
high order	\rightarrow	fast convergence

Iterated Function System (IFS) \rightarrow fractals (multiscale domain)

 ${\sf cubature} \ \ \rightarrow \ \ {\sf numerical\ integration}$

- high order \rightarrow fast convergence
- Iterated Function System (IFS) \rightarrow fractals (multiscale domain)

Applications: Fractal antenna engineering

Ezhumalai, Ganesan, Balasubramaniyan (2021)

Zoïs Moitier (ENSTA Paris)

High order cubature for IFS

2 / 27

Iterated Function System (IFS) and Hausdorff measure

Cubature for Iterated Function System (IFS)

- Interpolation and exact formula
- S-invariant case
- Non *S*-invariant case

$$S_1(x) = \frac{1}{2}x + \frac{1}{2}c_1$$

$$S_2(x) = \frac{1}{2}x + \frac{1}{2}c_2$$

$$S_3(x) = \frac{1}{2}x + \frac{1}{2}c_3$$

Fractal as Iterated Function System (IFS) attractor

$$S_1(x) = \frac{1}{2}x + \frac{1}{2}c_1$$

$$S_2(x) = \frac{1}{2}x + \frac{1}{2}c_2$$

$$S_3(x) = \frac{1}{2}x + \frac{1}{2}c_3$$

Fractal as Iterated Function System (IFS) attractor

 $p = \infty$

Iterated Functions System IFS = { S_{ℓ} : $\mathbb{R}^n \to \mathbb{R}^n : \ell = 1, ..., L$ } where • S_{ℓ} are affine and contractive ($\rho_{\ell} < 1$):

$$\|S_{\ell}(x) - S_{\ell}(y)\| \le \rho_{\ell} \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Thm. There exists a unique non-empty compact set $\Gamma \subset \mathbb{R}^n$ s.t. $\Gamma = \mathscr{H}(\Gamma) \coloneqq \bigcup_{\ell=1}^{L} S_{\ell}(\Gamma).$

For any non-empty compact set *F*:

- $\mathscr{H}^{p}(F) \to \Gamma$. (for the Hausdorff distance)
- If $S_1(F), \ldots, S_L(F) \subset F$, then $\Gamma = \bigcap_{p \ge 0} \mathscr{H}^p(F)$. $(\mathscr{H}^p(F) \text{ pre-fractal})$

Iterated Functions System IFS = { S_{ℓ} : $\mathbb{R}^n \to \mathbb{R}^n : \ell = 1, ..., L$ } where • S_{ℓ} are affine and contractive ($\rho_{\ell} < 1$):

$$\|S_{\ell}(x) - S_{\ell}(y)\| \leq \rho_{\ell} \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Thm. There exists a **unique** non-empty compact set $\Gamma \subset \mathbb{R}^n$ s.t.

$$\Gamma = \mathscr{H}(\Gamma) := \bigcup_{\ell=1}^{L} S_{\ell}(\Gamma).$$

For any non-empty compact set *F* :

- $\mathscr{H}^{p}(F) \to \Gamma$. (for the Hausdorff distance)
- If $S_1(F), \ldots, S_L(F) \subset F$, then $\Gamma = \bigcap_{p \ge 0} \mathscr{H}^p(F)$. $(\mathscr{H}^p(F) \text{ pre-fractal})$

Iterated Functions System IFS = { S_{ℓ} : $\mathbb{R}^n \to \mathbb{R}^n : \ell = 1, ..., L$ } where • S_{ℓ} are affine and contractive ($\rho_{\ell} < 1$):

$$\|S_{\ell}(x) - S_{\ell}(y)\| \leq \rho_{\ell} \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Thm. There exists a **unique** non-empty compact set $\Gamma \subset \mathbb{R}^n$ s.t.

$$\Gamma = \mathscr{H}(\Gamma) := \bigcup_{\ell=1}^{L} S_{\ell}(\Gamma).$$

For any non-empty compact set F:

- $\mathscr{H}^{p}(F) \to \Gamma$. (for the Hausdorff distance)
- If $S_1(F), \ldots, S_L(F) \subset F$, then $\Gamma = \bigcap_{p \ge 0} \mathscr{H}^p(F)$. $(\mathscr{H}^p(F) \text{ pre-fractal})$

More examples

Cantor set

	p = 0 p = 1							
set	p = 2			=			_	=
			•					
	11 11	 			11 11	11	11	шп

$$\mathcal{L}^{1}(E) = \alpha(1) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{1} \; \middle| \; E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$

$$\mathcal{L}^{2}(E) = \alpha(2) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{2} \mid E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$

$$\mathcal{L}^{1}(E) = \alpha(1) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{1} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\mathcal{H}^{d}(E) = \alpha(d) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{d} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\mathcal{L}^{2}(E) = \alpha(2) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{2} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$

$$\mathcal{L}^{1}(E) = \alpha(1) \liminf_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{1} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\mathcal{H}^{d}(E) = \alpha(d) \liminf_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{d} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\mathcal{L}^{2}(E) = \alpha(2) \liminf_{\delta \to 0} \left\{ \sum_{j \ge 1} r_{j}^{2} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$

$$\blacktriangleright \mathcal{H}^{d}(rE) = r^{d} \mathcal{H}^{d}(E) \qquad \qquad \blacktriangleright \mathcal{H}^{d}(\mathsf{T}E + b) = \mathcal{H}^{d}(E)$$

$$\mathcal{L}^{1}(E) = \alpha(1) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{1} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\mathcal{H}^{d}(E) = \alpha(d) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{d} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\mathcal{L}^{2}(E) = \alpha(2) \lim_{\delta \to 0} \inf \left\{ \sum_{j \ge 1} r_{j}^{2} \middle| E \subset \bigcup_{j \ge 1} B(x_{j}, r_{j}) \text{ and } r_{j} < \delta \right\}$$
$$\blacktriangleright \mathcal{H}^{d}(rE) = r^{d} \mathcal{H}^{d}(E) \qquad \blacktriangleright \mathcal{H}^{d}(\mathbf{T}E + b) = \mathcal{H}^{d}(E)$$

Def. $\exists ! d = \dim_{\mathcal{H}} E$ such that $\mathcal{H}^{\leq d}(E) = +\infty$ and $\mathcal{H}^{\geq d}(E) = 0$.

Given: k wavenumber, u^{in} incident field Find: the scatter field u^{sc} such that (PDE) $\begin{cases} -\Delta u^{\text{sc}} - k^2 u^{\text{sc}} = 0 & \text{in } \mathbb{R}^n \setminus \Gamma \\ u^{\text{sc}} = -u^{\text{in}} & \text{on } \Gamma \\ u^{\text{sc}} & \text{outgoing at infinity} \end{cases}$

Gibbs, Hewett, Major (2023)

We have
$$u^{sc}(x) = \int_{\Gamma} G(x, y)\phi(y) d\mathcal{H}_{y}^{d}, x \in \mathbb{R}^{n} \setminus \Gamma$$
, where G fund. sol. and
(IE) $\int_{\Gamma} G(x, y)\phi(y) d\mathcal{H}_{y}^{d} = u^{in}(x), \quad x \in \Gamma$
(BEM) $\iint_{\Gamma \times \Gamma} G(x, y)\phi(y)\psi(x) d\mathcal{H}_{y}^{d} d\mathcal{H}_{x}^{d} = \int_{\Gamma} u^{in}(x)\psi(x) d\mathcal{H}_{x}^{d}$

Chandler-Wilde, Hewett (2018), Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola (2024)

Given: k wavenumber, u^{in} incident field Find: the scatter field u^{sc} such that (PDE) $\begin{cases} -\Delta u^{sc} - k^2 u^{sc} = 0 & \text{in } \mathbb{R}^n \setminus \Gamma \\ u^{sc} = -u^{in} & \text{on } \Gamma \\ u^{sc} & \text{outgoing at infinity} \end{cases}$

Gibbs, Hewett, Major (2023)

We have
$$u^{sc}(x) = \int_{\Gamma} G(x, y)\phi(y) d\mathcal{H}_{y}^{d}, x \in \mathbb{R}^{n} \setminus \Gamma$$
, where G fund. sol. and
(IE) $\int_{\Gamma} G(x, y)\phi(y) d\mathcal{H}_{y}^{d} = u^{in}(x), \quad x \in \Gamma$
(BEM) $\iint_{\Gamma \times \Gamma} G(x, y)\phi(y)\psi(x) d\mathcal{H}_{y}^{d} d\mathcal{H}_{x}^{d} = \int_{\Gamma} u^{in}(x)\psi(x) d\mathcal{H}_{x}^{d}$

Chandler-Wilde, Hewett (2018), Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola (2024)

Given: k wavenumber, u^{in} incident field Find: the scatter field u^{sc} such that (PDE) $\begin{cases} -\Delta u^{sc} - k^2 u^{sc} = 0 & \text{in } \mathbb{R}^n \setminus \Gamma \\ u^{sc} = -u^{in} & \text{on } \Gamma \\ u^{sc} & \text{outgoing at infinity} \end{cases}$

Gibbs, Hewett, Major (2023)

We have
$$u^{sc}(x) = \int_{\Gamma} G(x, y)\phi(y) d\mathcal{H}_{y}^{d}, x \in \mathbb{R}^{n} \setminus \Gamma$$
, where G fund. sol. and
(IE) $\int_{\Gamma} G(x, y)\phi(y) d\mathcal{H}_{y}^{d} = u^{in}(x), \quad x \in \Gamma$
(BEM) $\iint_{\Gamma \times \Gamma} G(x, y)\phi(y)\psi(x) d\mathcal{H}_{y}^{d} d\mathcal{H}_{x}^{d} = \int_{\Gamma} u^{in}(x)\psi(x) d\mathcal{H}_{x}^{d}$

Chandler-Wilde, Hewett (2018), Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola (2024)

(BEM)
$$\iint_{\Gamma \times \Gamma} G(x, y) \phi(y) \psi(x) \, \mathrm{d}\mathcal{H}_y^d \, \mathrm{d}\mathcal{H}_x^d = \int_{\Gamma} u^{\mathrm{in}}(x) \psi(x) \, \mathrm{d}\mathcal{H}_x^d$$

$$\phi, \psi \in \operatorname{span}\{\mathbf{1}_{\Gamma_{\boldsymbol{w}}} \mid \boldsymbol{w} \in \{1, \dots, L\}^{p} \}$$
where $\Gamma_{\boldsymbol{w}} = S_{w_{1}} \circ \cdots \circ S_{w_{p}}(\Gamma)$

$$A \phi = U^{\text{in}}$$

$$\mathbb{A}_{\boldsymbol{w},\boldsymbol{v}} = \iint_{\Gamma_{\boldsymbol{w}} \times \Gamma_{\boldsymbol{v}}} G(x,y) \, \mathrm{d}\mathcal{H}^d_y \, \mathrm{d}\mathcal{H}^d_x \quad \text{and} \quad U^{\mathrm{in}}_{\boldsymbol{w}} = \int_{\Gamma_{\boldsymbol{w}}} u^{\mathrm{in}}(x) \, \mathrm{d}\mathcal{H}^d_x$$

Goal: numerically compute
$$\int_{\Gamma} f(x) d\mathcal{H}_{x}^{d}$$
, for smooth f .

Gibbs, Hewett, Moiola (2023), Gibbs, Hewett, Major (2023)

Zoïs Moitier (ENSTA Paris) High order cubature for IFS 9 / 27

(BEM)
$$\iint_{\Gamma \times \Gamma} G(x, y) \phi(y) \psi(x) \, \mathrm{d}\mathcal{H}_y^d \, \mathrm{d}\mathcal{H}_x^d = \int_{\Gamma} u^{\mathrm{in}}(x) \psi(x) \, \mathrm{d}\mathcal{H}_x^d$$

$$\phi, \psi \in \operatorname{span}\{\mathbf{1}_{\Gamma_{\boldsymbol{w}}} \mid \boldsymbol{w} \in \{1, \dots, L\}^{p}\}$$

where $\Gamma_{\boldsymbol{w}} = S_{w_{1}} \circ \cdots \circ S_{w_{p}}(\Gamma)$
$$\boxed{\mathbb{A}\Phi = U^{\operatorname{in}}}$$

$$\mathbb{A}_{\boldsymbol{w},\boldsymbol{v}} = \iint_{\Gamma_{\boldsymbol{w}} \times \Gamma_{\boldsymbol{v}}} G(x,y) \, \mathrm{d}\mathcal{H}_{y}^{d} \, \mathrm{d}\mathcal{H}_{x}^{d} \quad \text{and} \quad U_{\boldsymbol{w}}^{\mathrm{in}} = \int_{\Gamma_{\boldsymbol{w}}} u^{\mathrm{in}}(x) \, \mathrm{d}\mathcal{H}_{x}^{d}$$

Goal: numerically compute
$$\int_{\Gamma} f(x) d\mathcal{H}_{x}^{d}$$
, for smooth f

Gibbs, Hewett, Moiola (2023), Gibbs, Hewett, Major (2023)

Zoïs Moitier (ENSTA Paris) High order cubature for IFS 9 / 27

(BEM)
$$\iint_{\Gamma \times \Gamma} G(x, y) \phi(y) \psi(x) \, \mathrm{d}\mathcal{H}_y^d \, \mathrm{d}\mathcal{H}_x^d = \int_{\Gamma} u^{\mathrm{in}}(x) \psi(x) \, \mathrm{d}\mathcal{H}_x^d$$

$$\phi, \psi \in \operatorname{span}\{\mathbf{1}_{\Gamma_{\boldsymbol{w}}} \mid \boldsymbol{w} \in \{1, \dots, L\}^{p} \}$$
where $\Gamma_{\boldsymbol{w}} = S_{w_{1}} \circ \cdots \circ S_{w_{p}}(\Gamma)$

$$\boxed{\mathbb{A} \Phi = U^{\operatorname{in}}}$$

$$\mathbb{A}_{\boldsymbol{w},\boldsymbol{v}} = \iint_{\Gamma_{\boldsymbol{w}} \times \Gamma_{\boldsymbol{v}}} G(x,y) \, \mathrm{d}\mathcal{H}_{y}^{d} \, \mathrm{d}\mathcal{H}_{x}^{d} \quad \text{and} \quad U_{\boldsymbol{w}}^{\mathrm{in}} = \int_{\Gamma_{\boldsymbol{w}}} u^{\mathrm{in}}(x) \, \mathrm{d}\mathcal{H}_{x}^{d}$$

Goal: numerically compute
$$\int_{\Gamma} f(x) d\mathcal{H}_{x}^{d}$$
, for smooth f .

Gibbs, Hewett, Moiola (2023), Gibbs, Hewett, Major (2023)

Zoïs Moitier (ENSTA Paris) High order cubature for IFS 9 / 27

Iterated Function System (IFS) and Hausdorff measure

2 Cubature for Iterated Function System (IFS)

- Interpolation and exact formula
- S-invariant case
- Non \mathscr{S} -invariant case

Self-similar set and invariance property

 $\triangleright S_{\ell} : x \mapsto \rho_{\ell} T_{\ell} x + b_{\ell}$

$$||S_{\ell}(x) - S_{\ell}(y)|| = \rho_{\ell}||x - y||$$

- $0 < \rho_{\ell} < 1.$
- T_{ℓ} is an orthogonal matrix.
- $b_{\ell} \in \mathbb{R}^n$.

Thm. Let IFS
$$\{S_l : l = 1, \dots, L\}$$
 + OSC, we have

$$ho_1^{m{d}}+\dots+
ho_L^{m{d}}=1 \qquad ext{and} \qquad 0<\mathcal{H}^{m{d}}(\Gamma)<+\infty.$$

Rem. All examples in this talk satisfy the OSC.

Cor. For
$$f: \Gamma \to \mathbb{C}$$
, $\int_{\Gamma} f(x) \, \mathrm{d}\mathcal{H}^d_x = \sum_{1 \leq \ell \leq L} \rho^d_{\ell} \int_{\Gamma} f \circ S_{\ell}(x) \, \mathrm{d}\mathcal{H}^d_x.$

Self-similar set and invariance property

 $\triangleright S_{\ell} : x \mapsto \rho_{\ell} T_{\ell} x + b_{\ell}$

$$||S_{\ell}(x) - S_{\ell}(y)|| = \rho_{\ell}||x - y||$$

- $0 < \rho_{\ell} < 1.$
- T_{ℓ} is an orthogonal matrix.
- $b_{\ell} \in \mathbb{R}^n$.

Thm. Let IFS
$$\{S_{\ell} : \ell = 1, \dots, L\}$$
 + OSC, we have

$$ho_1^{{m d}}+\dots+
ho_L^{{m d}}=1 \qquad ext{and} \qquad 0<\mathcal{H}^{{m d}}(\Gamma)<+\infty.$$

Rem. All examples in this talk satisfy the OSC.

Cor. For
$$f: \Gamma \to \mathbb{C}$$
, $\int_{\Gamma} f(x) \, \mathrm{d}\mathcal{H}^d_x = \sum_{1 \leq \ell \leq L} \rho^d_\ell \int_{\Gamma} f \circ S_\ell(x) \, \mathrm{d}\mathcal{H}^d_x.$

Self-similar set and invariance property

 $\triangleright S_{\ell} : x \mapsto \rho_{\ell} T_{\ell} x + b_{\ell}$

$$\|S_{\ell}(x) - S_{\ell}(y)\| = \rho_{\ell}\|x - y\|$$

- $0 < \rho_{\ell} < 1.$
- T_{ℓ} is an orthogonal matrix.
- $b_{\ell} \in \mathbb{R}^n$.

Thm. Let IFS
$$\{S_{\ell} : \ell = 1, \dots, L\}$$
 + OSC, we have

$$ho_1^{{m d}}+\dots+
ho_L^{{m d}}=1 \qquad ext{and} \qquad 0<\mathcal{H}^{{m d}}(\Gamma)<+\infty.$$

Rem. All examples in this talk satisfy the OSC.

Cor. For
$$f: \Gamma \to \mathbb{C}$$
, $\int_{\Gamma} f(x) d\mathcal{H}_{x}^{d} = \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \int_{\Gamma} f \circ S_{\ell}(x) d\mathcal{H}_{x}^{d}$.

Previous works

Goal: For $f: \Omega \supset \Gamma \rightarrow \mathbb{C}$ smooth, compute $\int_{\Gamma} f(x) d\mu$. $\left| \mathsf{d} \mu = \frac{\mathsf{d} \mathcal{H}^{d}}{\mathcal{H}^{d}(\Gamma)} \right|$ Idea: $\int_{\Gamma} f(x) d\mu \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i)$ • For $\Gamma \subset \mathbb{R}$: • For generic IFS: • For IFS = $\{S_{\ell}(x) = A_{\ell}x + b_{\ell}\}$:

 $\circ\,$ easy to implement / slow convergence $N^{-2/c}$

Previous works

Goal: For $f: \Omega \supset \Gamma \to \mathbb{C}$ smooth, compute $\int_{\Gamma} f(x) d\mu$. $\left[d\mu = \frac{d\mathcal{H}^d}{\mathcal{H}^d(\Gamma)} \right]$ **Idea:** $\int_{\Gamma} f(x) d\mu \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i)$

Known results:

- For $\Gamma \subset \mathbb{R}$: Mantica (1996)
 - Gauss rules based on orthogonal polynomials
 - high order / only works on dimension 1
- For generic IFS: Forte, Mendivil, Vrscay (1998)
 - Chaos game rules
 - convergence independent of d / stochastic + slow convergence $N^{-1/2}$
- For IFS = { $S_{\ell}(x) = A_{\ell}x + b_{\ell}$ }:
 - Composite barycenter rules
 - easy to implement / slow convergence $N^{-2/d}$

Gibbs, Hewett, Moiola (2023)

Cubature

Goal: For $f: \Omega \supset \Gamma \to \mathbb{C}$ smooth, compute $\int_{\Gamma} f(x) d\mu$. $\left[d\mu = \frac{d\mathcal{H}^d}{\mathcal{H}^d(\Gamma)} \right]$ **Principe:** Given

- a space \mathcal{P} of polynomials;
- a "good" set of points $\{x_i\}_{i=1}^N$ such that $\exists ! \mathscr{L}_j \in \mathcal{P}$ Lagrange polynomials and $\mathscr{L}_j(x_i) = \delta_{i,j}$. $(\{x_i\} \text{ is } \mathcal{P}\text{-unisolvant})$

Example: For $\mathcal{P} = \mathbb{Q}_k := \operatorname{span}\{X_1^{\alpha_1}X_2^{\alpha_2} \mid \alpha_1, \alpha_2 \leq k\}$ and $\{x_i\}$ are tensor product of Gauss-Legendre / Chebyshev points.

From
$$f(x) \approx \sum_{i=1}^{N} f(x_i) \mathscr{L}_i(x)$$
 deduce $\{w_i\}$ s.t. $\int_{\Gamma} f(x) d\mu \approx \sum_{i=1}^{N} w_i f(x_i)$.

Imposing that the cubature formula is exact for $f \in \mathcal{P}$ gives

$$\int_{\Gamma} f(x) \, \mathrm{d}\mu = \sum_{i=1}^{N} f(x_i) w_i, \qquad \left[w_i = \int_{\Gamma} \mathscr{L}_i(x) \, \mathrm{d}\mu \right].$$

Cubature

Goal: For $f: \Omega \supset \Gamma \to \mathbb{C}$ smooth, compute $\int_{\Gamma} f(x) d\mu$. $\left[d\mu = \frac{d\mathcal{H}^d}{\mathcal{H}^d(\Gamma)} \right]$ **Principe:** Given

- a space \mathcal{P} of polynomials;
- a "good" set of points $\{x_i\}_{i=1}^N$ such that $\exists ! \mathscr{L}_j \in \mathcal{P}$ Lagrange polynomials and $\mathscr{L}_j(x_i) = \delta_{i,j}$. $(\{x_i\} \text{ is } \mathcal{P}\text{-unisolvant})$

Example: For $\mathcal{P} = \mathbb{Q}_k := \operatorname{span}\{X_1^{\alpha_1}X_2^{\alpha_2} \mid \alpha_1, \alpha_2 \leq k\}$ and $\{x_i\}$ are tensor product of Gauss-Legendre / Chebyshev points.

From
$$f(x) \approx \sum_{i=1}^{N} f(x_i) \mathscr{L}_i(x)$$
 deduce $\{w_i\}$ s.t. $\int_{\Gamma} f(x) d\mu \approx \sum_{i=1}^{N} w_i f(x_i)$.

Imposing that the cubature formula is exact for $f \in \mathcal{P}$ gives

$$\int_{\Gamma} f(x) \, \mathrm{d}\mu = \sum_{i=1}^{N} f(x_i) w_i, \qquad \left[w_i = \int_{\Gamma} \mathscr{L}_i(x) \, \mathrm{d}\mu \right].$$

Cubature

Goal: For $f: \Omega \supset \Gamma \to \mathbb{C}$ smooth, compute $\int_{\Gamma} f(x) d\mu$. $\left[d\mu = \frac{d\mathcal{H}^d}{\mathcal{H}^d(\Gamma)} \right]$ **Principe:** Given

- a space \mathcal{P} of polynomials;
- a "good" set of points $\{x_i\}_{i=1}^N$ such that $\exists ! \mathscr{L}_j \in \mathcal{P}$ Lagrange polynomials and $\mathscr{L}_j(x_i) = \delta_{i,j}$. $(\{x_i\} \text{ is } \mathcal{P}\text{-unisolvant})$

Example: For $\mathcal{P} = \mathbb{Q}_k := \operatorname{span}\{X_1^{\alpha_1}X_2^{\alpha_2} \mid \alpha_1, \alpha_2 \leq k\}$ and $\{x_i\}$ are tensor product of Gauss-Legendre / Chebyshev points.

From
$$f(x) \approx \sum_{i=1}^{N} f(\mathbf{x}_i) \mathscr{L}_i(x)$$
 deduce $\{w_i\}$ s.t. $\int_{\Gamma} f(x) d\mu \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i)$.

Imposing that the cubature formula is exact for $f \in \mathcal{P}$ gives

$$\int_{\Gamma} f(x) \, \mathrm{d}\mu = \sum_{i=1}^{N} f(\mathbf{x}_i) \mathbf{w}_i, \qquad \left[\mathbf{w}_i = \int_{\Gamma} \mathscr{L}_i(x) \, \mathrm{d}\mu \right].$$

Weights computation for *S*-invariant spaces

Goal: computing
$$w_i = \int_{\Gamma} \mathscr{L}_i(x) d\mu$$

Rem. There exists a recursive algorithm (on the total degree) for computing the integral of monomials. Strichartz (2000)

Def. A polynomial space \mathcal{P} is \mathscr{S} -invariant if

$$p \circ S_1, \ldots, p \circ S_L \in \mathcal{P}, \quad \forall p \in \mathcal{P}.$$

Examples:

- $\mathbb{P}_k \coloneqq \operatorname{span}\{X_1^{\alpha_1}X_2^{\alpha_2} | \alpha_1 + \alpha_2 \le k\}$ is always \mathscr{S} -invariant.
- $\mathbb{Q}_k := \operatorname{span}\{X_1^{\alpha_1}X_2^{\alpha_2} \mid \alpha_1, \alpha_2 \leq k\}$ is \mathscr{S} -invariant if $\mathcal{T}_{\ell} = \operatorname{diag}(\pm 1 \dots)$.

Weights computation for \mathscr{S} -invariant spaces

Goal: computing
$$w_i = \int_{\Gamma} \mathscr{L}_i(x) d\mu$$

Rem. There exists a recursive algorithm (on the total degree) for computing the integral of monomials. Strichartz (2000)

Def. A polynomial space \mathcal{P} is \mathscr{S} -invariant if

$$p \circ S_1, \ldots, p \circ S_L \in \mathcal{P}, \qquad \forall p \in \mathcal{P}.$$

Examples:

- $\mathbb{P}_k \coloneqq \operatorname{span} \{ X_1^{\alpha_1} X_2^{\alpha_2} \, | \, \alpha_1 + \alpha_2 \leq k \}$ is always \mathscr{S} -invariant.
- $\mathbb{Q}_k := \operatorname{span}\{X_1^{\alpha_1}X_2^{\alpha_2} \mid \alpha_1, \alpha_2 \leq k\}$ is \mathscr{S} -invariant if $\mathcal{T}_{\ell} = \operatorname{diag}(\pm 1 \dots)$.

Weights computation for *S*-invariant spaces

$$w_{i} = \int_{\Gamma} \mathscr{L}_{i}(x) d\mu = \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \int_{\Gamma} \mathscr{L}_{i} \circ S_{\ell}(x) d\mu$$
$$= \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \int_{\Gamma} \sum_{1 \leq j \leq N} \mathscr{L}_{i} \circ S_{\ell}(x_{j}) \mathscr{L}_{j}(x) d\mu$$
$$= \sum_{1 \leq j \leq N} \left[\sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \mathscr{L}_{i} \circ S_{\ell}(x_{j}) \right] \underbrace{\int_{\Gamma} \mathscr{L}_{j}(x) d\mu}_{=w_{i}}$$

We get
$$\mathbf{S}w = w$$
 where $\mathbf{S}_{i,j} = \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \mathscr{L}_{i} \circ S_{\ell}(\mathsf{x}_{j}).$

 $\label{eq:linear} \begin{tabular}{ll} \mbox{Lem. 1 is a simple eigenvalue of \mathbf{S} and $|\mbox{Sp}(\mathbf{S}) \setminus \{1\}| \leq \max_{\ell} \rho_{\ell} < 1.$$$$ Joly, Kachanovska, Moitier (2024)$}$

Therefore, Sw = w with $w_1 + \cdots + w_N = 1$ has a unique solution.

Numeric: w_i computed using a power iteration method on **S**

Zoïs Moitier (ENSTA Paris) High order cubature for IFS 15 / 27

Weights computation for *S*-invariant spaces

$$w_{i} = \int_{\Gamma} \mathscr{L}_{i}(x) d\mu = \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \int_{\Gamma} \mathscr{L}_{i} \circ S_{\ell}(x) d\mu$$
$$= \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \int_{\Gamma} \sum_{1 \leq j \leq N} \mathscr{L}_{i} \circ S_{\ell}(x_{j}) \mathscr{L}_{j}(x) d\mu$$
$$= \sum_{1 \leq j \leq N} \left[\sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \mathscr{L}_{i} \circ S_{\ell}(x_{j}) \right] \underbrace{\int_{\Gamma} \mathscr{L}_{j}(x) d\mu}_{=w_{j}}$$

We get
$$|\mathbf{S}w = w|$$
 where $\mathbf{S}_{i,j} = \sum_{1 \leq \ell \leq L} \rho_{\ell}^{d} \mathscr{L}_{i} \circ S_{\ell}(\mathbf{x}_{j})$.

Therefore, $\mathbf{S}w = w$ with $w_1 + \cdots + w_N = 1$ has a unique solution.

Numeric: w_i computed using a power iteration method on **S**.

Weights bound for *S*-invariant spaces

 $\begin{array}{ll} \mbox{Prop: } |w_1| + \cdots + |w_N| \leq \Lambda_N & (\mbox{Lebesgue constant of } \{x_i\}) \\ \mbox{where } \Lambda_N \mbox{ is the norm of the polynomial interpolation operator on } L^\infty. \end{array}$

Example. In 1d, $\Lambda_N^{\text{equispaced}} \sim \frac{2^{N+1}}{eN \log N}$ and $\Lambda_N^{\text{Chebyshev}} \sim \frac{2}{\pi} \log(N+1)$.

Cantor set $(S_1(x) = \rho x \text{ and } S_2(x) = \rho x + 1 - \rho)$

Weights bound for *S*-invariant spaces

 $\begin{array}{ll} \mbox{Prop: } |w_1|+\cdots+|w_N|\leq \Lambda_N & (\mbox{Lebesgue constant of }\{x_i\}) \\ \mbox{where } \Lambda_N \mbox{ is the norm of the polynomial interpolation operator on } L^\infty. \end{array}$

Example. In 1d, $\Lambda_N^{\text{equispaced}} \sim \frac{2^{N+1}}{eN \log N}$ and $\Lambda_N^{\text{Chebyshev}} \sim \frac{2}{\pi} \log(N+1)$.

Cantor set
$$(S_1(x)=
ho x$$
 and $S_2(x)=
ho x+1-
ho)$

Zoïs Moitier (ENSTA Paris)

S-invariant case: weights

Zoïs Moitier (ENSTA Paris)

S-invariant case: Numeric on polynomials

The points (t_i, t_j) where $\{t_i\}$ Chebyshev points.

Zoïs Moitier (ENSTA Paris)

High order cubature for IFS

18 / 27

\mathscr{S} -invariant case: Numeric on functions

The points (t_i, t_j) where $\{t_i\}$ Chebyshev points.

Zoïs Moitier (ENSTA Paris) High order cubature for IFS

Non *S*-invariant case: Description

Hyp: $\mathcal{P} = \mathbb{Q}_k$ and T_ℓ arbitrary. [non \mathscr{S} -invariant] • For $w_i = \int_{\Gamma} \mathscr{L}_i(x) d\mu$, we have $\mathbf{S}w \neq w$. • $\mathbf{S}\widetilde{w} = \widetilde{w}$ and $\widetilde{w}_1 + \dots + \widetilde{w}_N = 1$, $[\mathbf{S}_{i,j} = \sum_{\ell} \rho_\ell^d \mathscr{L}_i \circ S_\ell(x_j)]$ $\sum_i \widetilde{w}_i f(\mathbf{x}_i) = \sum_{\ell} \rho_\ell^d \sum_i \widetilde{w}_i f \circ S_\ell(\mathbf{x}_i), \qquad \int_{\Gamma} f d\mu = \sum_{\ell} \rho_\ell^d \int_{\Gamma} f \circ S_\ell d\mu$

Conjecture. 1 is a simple eigenvalue of **S** and $|Sp(S) \setminus \{1\}| \le \max_{\ell} \rho_{\ell}$.

▶ Proof when $\rho_{\ell} < c(N, k)$. ▶ Verified numerically.

Thm. Any \mathscr{S} -inv. subspace $\underbrace{\mathcal{P}}_{i} \subset \underbrace{\mathcal{P}}_{i}$ is exactly int. by $\sum_{i} \widetilde{w}_{i} f(\mathbf{x}_{i})$.

Zoïs Moitier (ENSTA Paris) High order cubature for IFS 20 / 27

Non *S*-invariant case: Description

Hyp: $\mathcal{P} = \mathbb{Q}_k$ and \mathcal{T}_{ℓ} arbitrary. [non \mathscr{S} -invariant]

• For
$$w_i = \int_{\Gamma} \mathscr{L}_i(x) d\mu$$
, we have $\mathbf{S}_w \neq w$.

• $\mathbf{S}\widetilde{w} = \widetilde{w}$ and $\widetilde{w}_1 + \cdots + \widetilde{w}_N = 1$,

 $[\mathbf{S}_{i,j} = \sum_{\ell}
ho_{\ell}^{d} \mathscr{L}_{i} \circ S_{\ell}(\mathbf{x}_{j})]$

$$\sum_{i} \widetilde{w}_{i} f(\mathbf{x}_{i}) = \sum_{\ell} \rho_{\ell}^{d} \sum_{i} \widetilde{w}_{i} f \circ S_{\ell}(\mathbf{x}_{i}), \qquad \int_{\Gamma} f \, \mathrm{d}\mu = \sum_{\ell} \rho_{\ell}^{d} \int_{\Gamma} f \circ S_{\ell} \, \mathrm{d}\mu$$

Conjecture. 1 is a simple eigenvalue of **S** and $|Sp(S) \setminus \{1\}| \le \max_{\ell} \rho_{\ell}$.

▶ Proof when $\rho_{\ell} < c(N, k)$. ▶ Verified numerically.

Thm. Any
$$\mathscr{S}$$
-inv. subspace $\underbrace{\mathcal{P}}^{\mathscr{S}}_{"\mathbb{P}_{k}"} \subset \underbrace{\mathcal{P}}_{"\mathbb{Q}_{k}"}$ is exactly int. by $\sum_{i} \widetilde{w}_{i} f(x_{i})$.
Joly, Kachanovska, Moitier (2024)

Zoïs Moitier (ENSTA Paris) High order cubature for IFS 20 / 27

Non \mathscr{S} -invariant case: Description

Hyp: $\mathcal{P} = \mathbb{Q}_k$ and \mathbf{T}_{ℓ} arbitrary. [non *S*-invariant]

• For
$$w_i = \int_{\Gamma} \mathscr{L}_i(x) d\mu$$
, we have $\mathbf{S}w \neq w$.

• $\mathbf{S}\widetilde{w} = \widetilde{w}$ and $\widetilde{w}_1 + \cdots + \widetilde{w}_N = 1$,

$$[\mathbf{S}_{i,j} = \sum_{\ell}
ho_{\ell}^{d} \mathscr{L}_{i} \circ S_{\ell}(\mathbf{x}_{j})$$

$$\sum_{i} \widetilde{w}_{i} f(\mathbf{x}_{i}) = \sum_{\ell} \rho_{\ell}^{d} \sum_{i} \widetilde{w}_{i} f \circ S_{\ell}(\mathbf{x}_{i}), \qquad \int_{\Gamma} f \, \mathrm{d}\mu = \sum_{\ell} \rho_{\ell}^{d} \int_{\Gamma} f \circ S_{\ell} \, \mathrm{d}\mu$$

 \sim

Conjecture. 1 is a simple eigenvalue of **S** and $|Sp(S) \setminus \{1\}| \leq \max_{\ell} \rho_{\ell}$.

▶ Proof when $\rho_{\ell} < c(N, k)$. Verified numerically.

Non *S*-invariant case: Description

Hyp: $\mathcal{P} = \mathbb{Q}_k$ and \mathcal{T}_{ℓ} arbitrary. [non \mathscr{S} -invariant]

• For
$$w_i = \int_{\Gamma} \mathscr{L}_i(x) d\mu$$
, we have $\mathbf{S}_w \neq w$.

• $\mathbf{S}\widetilde{w} = \widetilde{w}$ and $\widetilde{w}_1 + \cdots + \widetilde{w}_N = 1$,

 $[\mathbf{S}_{i,j} = \sum_{\ell}
ho^d_{\ell} \mathscr{L}_i \circ S_{\ell}(\mathbf{x}_j)]$

$$\sum_{i} \widetilde{w}_{i} f(\mathbf{x}_{i}) = \sum_{\ell} \rho_{\ell}^{d} \sum_{i} \widetilde{w}_{i} f \circ S_{\ell}(\mathbf{x}_{i}), \qquad \int_{\Gamma} f \, \mathrm{d}\mu = \sum_{\ell} \rho_{\ell}^{d} \int_{\Gamma} f \circ S_{\ell} \, \mathrm{d}\mu$$

Conjecture. 1 is a simple eigenvalue of **S** and $|Sp(S) \setminus \{1\}| \le \max_{\ell} \rho_{\ell}$.

▶ Proof when $\rho_{\ell} < c(N, k)$. ▶ Verified numerically.

Thm. Any \mathscr{S} -inv. subspace $\underbrace{\mathcal{P}}_{``\mathbb{P}_k"}^{\mathscr{S}} \subset \underbrace{\mathcal{P}}_{``\mathbb{Q}_k"}^{\mathscr{P}}$ is exactly int. by $\sum_i \widetilde{w}_i f(\mathbf{x}_i)$. Joly, Kachanovska, Moitier (2024)

Non *S*-invariant case: Numerics

Vicsek

Vicsek with rotation

Koch snowflake

The points (t_i, t_j) where $\{t_i\}$ Chebyshev points.

No theoretical bound on

$$\sum_{i=1}^{N} |w_i|$$

Non *S*-invariant case: Numerics

Vicsek

Vicsek with rotation

Koch snowflake

The points (t_i, t_j) where $\{t_i\}$ Chebyshev points.

Non *S*-invariant case: Numerics

The points (t_i, t_j) where $\{t_i\}$ Chebyshev points.

Zoïs Moitier (ENSTA Paris) High order cubature for IFS

22 / 27

Numerics: *h*-version

Fix N and refine the cubature using S_{ℓ} .

Zoïs Moitier (ENSTA Paris)

High order cubature for IFS

23 / 27

"3d Vicsek" with rotation

Iterated Function System (IFS) and Hausdorff measure

Cubature for Iterated Function System (IFS)

- Interpolation and exact formula
- S-invariant case
- Non *S*-invariant case

Conclusions et perspectives

Conclusion:

► We have constructed high order cubature (*h*-version and *p*-version) for $\int_{\Gamma} f(x) d\mu$ where Γ is an IFS attractor.

Remark:

- ▶ Works with other invariant measure than Hausdorff.
- ► Works with self-affine set.

Perspective:

- ► Incorporate this cubature in the full BEM case.
- ► Singular weight $\int_{\Gamma \times \Gamma} f(x, y) \frac{d\mu_x d\mu_y}{|x-y|^{\alpha}} \approx \sum_{i,j} w_{i,j} f(x_i, x_j).$

Thank you for your attention

Conclusions et perspectives

Conclusion:

► We have constructed high order cubature (*h*-version and *p*-version) for $\int_{\Gamma} f(x) d\mu$ where Γ is an IFS attractor.

Remark:

- ▶ Works with other invariant measure than Hausdorff.
- ► Works with self-affine set.

Perspective:

- ► Incorporate this cubature in the full BEM case.
- ► Singular weight $\int_{\Gamma \times \Gamma} f(x, y) \frac{d\mu_x d\mu_y}{|x-y|^{\alpha}} \approx \sum_{i,j} w_{i,j} f(x_i, x_j).$

Thank you for your attention

Bibliography

- Caetano et al. "A Hausdorff-measure boundary element method for acoustic scattering by fractal screens". In: *Numer. Math.* (2024).
- Chandler-Wilde, Hewett. "Well-posed PDE and integral equation formulations for scattering by fractal screens". In: SIMA (2018).
- [3] Ezhumalai, Ganesan, Balasubramaniyan. "An extensive survey on fractal structures using iterated function system in patch antennas". In: *Int. J. Commun. Syst.* (2021).
- [4] Forte, Mendivil, Vrscay. ""Chaos Games" for Iterated Function Systems with Grey Level Maps". In: SIMA (1998).
- [5] Gibbs, Hewett, Major. "Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets". In: Numer. Algor. (2023).
- [6] Gibbs, Hewett, Moiola. "Numerical quadrature for singular integrals on fractals". In: Numer. Algor. (2023).
- Joly, Kachanovska, Moitier. High-order numerical integration on self-affine sets. 2024. arXiv: 2410.00637.
- [8] Mantica. "A stable stieltjes technique for computing orthogonal polynomials and jacobi matrices associated with a class of singular measures". In: Constr. Approx. (1996).
- [9] Strichartz. "Evaluating integrals using self-similarity". In: Am. Math. Mon. (2000).

Cantor set: \mathcal{H} -matrix

Cantor set: \mathcal{H} -matrix

We have

$$B = \rho^{2d-1}(A_{0,0} + A_{0,1} + A_{1,0} + A_{1,1})$$

where

$$A = \begin{pmatrix} A_{0,0} & A_{0,1} \\ A_{1,0} & A_{1,1} \end{pmatrix}$$

Lem. If A is r-low-rank than B is r-low-rank.

Proof. If $A \approx X^{\mathsf{T}}Y$ with $||A - X^{\mathsf{T}}Y|| < \varepsilon$, we note $X = \begin{pmatrix} X_0 \\ X_1 \end{pmatrix}$, $Y = \begin{pmatrix} Y_0 \\ Y_1 \end{pmatrix}$ then $B \approx \rho^{2d-1}(X_0 + X_1)^{\mathsf{T}}(Y_0 + Y_1)$ width

$$\|B - \rho^{2d-1}(X_0 + X_1)^{\mathsf{T}}(Y_0 + Y_1)\| < \rho^{2d-1}L\varepsilon$$