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What is not new?

Toselli and Widlund (2005): Domain Decomposition
Methods - Algorithms and Theory
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Classical Results in Domain Decomposition
Two Level Schwarz Methods:

Balancing Neumann-Neumann Methods:

Two Level FETI-DP Methods:
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New 1: What about Helmholtz Problems?

All Classical DD Results are for Laplace-type Problems!

I Non-locality of solutions to (∆ + ω2)u = f

I Difficulty of Krylov Methods: GMRES
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I Algebraic preconditioners with QMR:
ω 5 10 15 20

QMR 197 737 1775 > 2000
ILU(’0’) 60 370 > 2000 —

ILU(1e-2) 22 80 220 > 2000

I Multigrid method (see also Brandt, Lifshitz 1997!)
ω Smoothing steps 2.5π 5π 10π 20π

Iterative ν = 2 7 div div div
Preconditioner ν = 2 6 12 41 127

Iterative ν = 5 7 stag div div
Preconditioner ν = 5 5 13 41 223

Iterative ν = 10 8 div div div
Preconditioner ν = 10 5 10 14 87

I Schwarz methods (see also Després 1991!)
ω Overlap 10π 20π 40π 80π 160π

Iterative h div div div div div
Preconditioner h 20 33 45 69 110

Iterative fixed div div div div div
Preconditioner fixed 16 23 43 86 155

G, Ernst (2012): Why it is difficult to solve Helmholtz

problems with classical iterative methods
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New sweeping type DD preconditioners

I Engquist and Ying (2011): Sweeping preconditioner
for the Helmholtz equation: moving perfectly matched
layers

I Chen, Xiang (2013): A source transfer domain
decomposition method for Helmholtz equations in
unbounded domain I and II

I Stolk (2013): A rapidly converging domain
decomposition method for the Helmholtz equation

I Zepeda-Núñez and Demanet (2018): Nested
domain decomposition with polarized traces for the 2D
Helmholtz equation

I Graham, Spence, Zou (2020): Domain
decomposition with local impedance conditions for the
Helmholtz equation with absorption
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All these are Optimized Schwarz Methods
G, Zhang (2019): A class of iterative solvers for the
Helmholtz equation: Factorizations, sweeping
preconditioners, source transfer, single layer potentials,
polarized traces, and optimized Schwarz methods.

(∆ + ω2)u = f in Ω := (0, 1)× (0,Y )
y

x0

Y

Ω1 Ω2

X l
2 X r

1

1

Subdomains: Ω1 := (0,X r
1 )× (0,Y ), Ω2 := (X l

2, 1)× (0,Y )

(∆+ω2)un1 = f in Ω1, (∆+ω2)un2 = f in Ω2

Br1(un1 ) = Br1(un−1
2 ) at X r

1 , Bl2(un2 ) = Bl2(un1 ) at X l
2

General transmission conditions of the form

Br1(u) := ∂n1u + Sr1(u), Bl2(u) := ∂n2u + S l2(u).
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However their performance also deteriorates!
G, Magoules, Nataf (2002): Optimized Schwarz Methods
without Overlap for the Helmholtz Equation

Convergence factor is 1− O(ω−
1
4 )

Helmholtz solution in a cavity
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However their performance also deteriorates?
G, Magoules, Nataf (2002): Optimized Schwarz Methods
without Overlap for the Helmholtz Equation

Convergence factor is 1− O(ω−
1
4 ) ?

Helmholtz solution in a wave guide
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However their performance also deteriorates?
G, Magoules, Nataf (2002): Optimized Schwarz Methods
without Overlap for the Helmholtz Equation

Convergence factor is 1− O(ω−
1
4 ) ???

Helmholtz solution in free space
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Analysis of these new DD methods

G, Zhang (2022): Schwarz Methods by Domain
Truncation, Acta Numerica.

y

x0

Y

Ω1
Ω2

X l
2 X r

1

1

Bl(u) = g l Br (u) = g r

Bb(u) = gb

Bt(u) = g t

B`(u) := ∂nu + p`u = g `, ` ∈ {l , r , t, b}
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Helmholtz free Space (∂n + iω)u = 0 also TC
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Helmholtz free Space (∂n + iω)u = 0 OSM
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Helmholtz free Space (∂n + iω)u = 0 PML
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Many many results in Acta Numerica 2022

G, Tonnoir 2024: Schwarz for Convected Helmholtz Equations
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New 2: Scalability and Coarse Spaces
Toselli and Widlund (2005): Classical view in DD

y

x0

Y

Ωij

Ω̃ij

X l
i X r

i X

Y b
j

Y t
j

Ω̃ij non-overlapping, and
Ωij enlarged overlapping:

∆unij = f in Ωij

unij = un−1
kl on ∂Ωij ∩ Ω̃kl

y

x0

Y

Ω1 Ω2 Ω3

Ω̃1 Ω̃2 Ω̃3

X l
2 X r

2 X
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3 Ω4
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3 Ω4 Ω5
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7
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One level DD methods can be scalable!

One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8
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One level DD methods can be scalable!
One level Schwarz methods for ∆u = f are scalable with
Dirichlet conditions when adding subdomains like

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

Ciaramella and G. (2017): Analysis of the parallel Schwarz
method for the solution of chains of particles, Part I-III
Three different proofs: Fourier in L2, maximum principle in
L∞ and alternating projection interpretation in H1

Chaouqui, Ciaramella, G, Vanzan (2018): On the
scalability of classical one-level domain-decomposition
methods.
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Eigenmodes of the Schwarz iteration operator
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=⇒ Should use discontinuous Q1 coarse space aligned with
subdomains or relaxation parameter 2/3 in two level Schwarz

Hackbusch (1985): Multigrid methods and applications

Xu (1992): Iterative methods by space decomposition and

subspace correction
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PETSc comparison with HPYRE/BoomerAMG

G, Van Criekingen (2020): New coarse corrections for
ORAS using PETSc
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New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u1 = u0 + ∆tf (u0)

t

u

u0
u1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12



What is new in
DD?

Martin J. Gander

Introduction

What is not new?

Classical Results

New 1: Helmholtz

Iterations fail

New DD Methods

Optimized Schwarz

Numerical Analysis

New 2: Scalability

1-Level Scalability

Better than MG!

Enrichment and SHEM

New 3: PinT

Causality Principle

The Parareal Algorithm

STMG

Tent Pitching

ParaDiag

Conclusion

New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u2 = u1 + ∆tf (u1)

t

u

u0
u1

u2

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u3 = u2 + ∆tf (u2)

t

u

u0
u1

u2
u3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u4 = u3 + ∆tf (u3)

t

u

u0
u1

u2
u3 u4

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u5 = u4 + ∆tf (u4)

t

u

u0
u1

u2
u3 u4 u5

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u6 = u5 + ∆tf (u5)

t

u

u0
u1

u2
u3 u4 u5 u6

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

un+1 = un + ∆tf (un)

t

u

u0
u1

u2
u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Domain decomposition in time ?
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Heat Equation: Dirichlet and Neumann Conditions
ut = uxx + f , u(0, t) = u(1, t) = 0 and ux(0, t) = ux(1, t) = 0
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Transport Equation: Dirichlet and Periodic
ut + ux = f , u(0, t) = 0 and u(0, t) = u(1, t)
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Parabolic PinT: the Parareal Algorithm
For solving the evolution problem

∂tu(t) = f (t,u(t)) t ∈ (0,T ],
u(0) = u0,

The time domain (0,T ] is partitioned into subdomains
(Tn−1,Tn], and Parareal needs two propagation operators:

1. G (t2, t1,u1) is a coarse approximation to the solution
u(t2) with initial condition u(t1) = u1,

2. F (t2, t1,u1) is a more accurate approximation of the
solution u(t2) with initial condition u(t1) = u1.

Parareal then starts with an initial coarse approximation U0
n

at T0,T1, . . . ,TN , and computes

Uk+1
0 :=u0,

Uk+1
n+1:=F (Tn+1,Tn,Uk

n)+G (Tn+1,Tn,Uk+1
n )−G (Tn+1,Tn,Uk

n)

Lions, Maday, Turinici (2001): Résolution d’EDP par un

schéma en temps “pararéel”
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Heat example: Iteration 1

Parareal Error
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Heat example: Iteration 2

Parareal Error
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Heat example: Iteration 3

Parareal Error
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Heat example: Iteration 4

Parareal Error
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Heat example: Iteration 5

Parareal Error
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Much better than Parareal: Heat eq. in 3D
G, Neumüller (2016): Space-Time Parallel Multigrid

cores time steps dof iter time fwd. sub.

1 2 59 768 7 28.8 19.0
2 4 119 536 7 29.8 37.9
4 8 239 072 7 29.8 75.9
8 16 478 144 7 29.9 152.2

16 32 956 288 7 29.9 305.4
32 64 1 912 576 7 29.9 613.6
64 128 3 825 152 7 29.9 1 220.7

128 256 7 650 304 7 29.9 2 448.4
256 512 15 300 608 7 30.0 4 882.4
512 1 024 30 601 216 7 29.9 9 744.2

1 024 2 048 61 202 432 7 30.0 19 636.9
2 048 4 096 122 404 864 7 29.9 38 993.1
4 096 8 192 244 809 728 7 30.0 81 219.6
8 192 16 384 489 619 456 7 30.0 162 551.0

16 384 32 768 979 238 912 7 30.0 313 122.0
32 768 65 536 1 958 477 824 7 30.0 625 686.0
65 536 131 072 3 916 955 648 7 30.0 1 250 210.0

131 072 262 144 7 833 911 296 7 30.0 2 500 350.0
262 144 524 288 15 667 822 592 7 30.0 4 988 060.0
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Parareal advection example: Iteration 1

Parareal Error
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Parareal advection example: Iteration 2

Parareal Error
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Parareal advection example: Iteration 3

Parareal Error
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Parareal advection example: Iteration 4

Parareal Error
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Parareal advection example: Iteration 5

Parareal Error
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Hyperbolic PinT: Mapped Tent Pitching (MTP)

Gopalakrishnan, Schöberl, Wintersteiger (2017):
Mapped Tent Pitching Schemes for Hyperbolic Systems

“This paper explores a technique by which standard

discretizations, including explicit time stepping, can be used within

tent-shaped spacetime domains. The technique transforms the

equations within a spacetime tent to a domain where space and

time are separable.”

Gopalakrishnan, Hochteger, Schöberl, Wintersteiger
(2020): An Explicit Mapped Tent Pitching Scheme for
Maxwell Equations

Probably the best PinT Maxwell solver currently available!
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Red Black Schwarz Waveform Relaxation

k = 1

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4

x0 x1 x2 x3 x4 x5 x6
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Second Iteration of RBSWR

k = 2

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4

x0 x1 x2 x3 x4 x5 x6
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Third Iteration of RBSWR

k = 3

Ω1 Ω3 Ω5

Ω2 Ω4

x0 x1 x2 x3 x4 x5 x6
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Fourth Iteration of RBSWR

k = 4

Ω1 Ω3 Ω5

Ω2 Ω4

x0 x1 x2 x3 x4 x5 x6
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Red Black Schwarz Waveform Relaxation
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Red iteration 1 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Black iteration 1 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Red iteration 2 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Black iteration 2 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Red iteration 3 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Black iteration 3 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Red iteration 4 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Black iteration 4 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Red iteration 5 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Black iteration 5 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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Red iteration 6 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation
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[A,f,ue]=AllAtOnceSystem(n,m);

[Rr,Rb,mtr,mtb]=RedBlackSubdomains(n,m,nx);

u=rand(m*n,1)-1/2;

for jr=1:mtr

for ir=1:nx

u=u+Rr{ir,jr}’*((Rr{ir,jr}*A*Rr{ir,jr}’)...

\(Rr{ir,jr}*(f-A*u)));

end;

U=reshape(ue-u,n,m);

surf(t,x,U); xlabel(’t’);ylabel(’x’); pause

if jr<=mtb

for ib=1:nx-1

u=u+Rb{ib,jr}’*((Rb{ib,jr}*A*Rb{ib,jr}’)...

\(Rb{ib,jr}*(f-A*u)));

end;

U=reshape(ue-u,n,m);

surf(t,x,U); xlabel(’t’);ylabel(’x’); pause

end

end;
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ParaDiag II on advection: Initial Guess

ParaDiag II Error
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ParaDiag II on advection: Iteration 1

ParaDiag II Error



What is new in
DD?

Martin J. Gander

Introduction

What is not new?

Classical Results

New 1: Helmholtz

Iterations fail

New DD Methods

Optimized Schwarz

Numerical Analysis

New 2: Scalability

1-Level Scalability

Better than MG!

Enrichment and SHEM

New 3: PinT

Causality Principle

The Parareal Algorithm

STMG

Tent Pitching

ParaDiag

Conclusion

ParaDiag II on advection: Iteration 2

ParaDiag II Error
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ParaDiag II on advection: Iteration 3

ParaDiag II Error
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Predicting the future is a difficult task but, as with the weather, it is possible with good models. 
But how does one predict the far future before the near future is known? Time parallel time 
integration, also known as PinT (Parallel-in-Time) methods, aims to predict the near and far 
future simultaneously. In this self-contained book, the first on the topic, readers will find a 
comprehensive and up-to-date description of methods and techniques that have been developed 
to do just this. 
The authors describe the four main classes of PinT methods: shooting-type methods, waveform 
relaxation methods, time parallel multigrid methods, and direct time parallel methods. In 
addition, they provide

• historical background for each of the method classes,
• complete convergence analyses for the most representative variants of the methods in each 

class, and 
• illustrations and runnable MATLAB code.

An ideal introduction to this exciting and very active research field, Time Parallel Time 
Integration can be used for independent study or for a graduate course.
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