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What is not new?

Toselli and Widlund (2005): Domain Decomposition
Methods - Algorithms and Theory

Domain decomposition generally refers to the splitting of a partial differen-
tial equation, or an approximation thereof, into coupled problems on smaller
subdomains forming a partition of the original domain. This decomposition
may enter at the continuous level, where different physical models may be
used in different regions, or at the discretization level, where it may be con-
venient to employ different approximation methods in different regions, or in
the solution of the algebraic systems arising from the approximation of the
partial differential equation. These three aspects are very often interconnected
in practice.

This monograph is entirely devoted to the third aspect of domain decompo-
sition.

Definition 1.2 (Optimality). An iterative method for the solution of a
linear system is said to be optimal, if its rate of convergence to the exact
solution is independent of the size of the system.
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Classical Results in Domain Decomposition

Two Level Schwarz Methods:

Theorem 3.13 In case exact solvers are employed on all subspaces, the con-
dition number of the additive Schwarz operator satisfies

K(Pad) < C (1 ; %) ,
where C depends on N°¢, but is otherwise independent of h, H, and §.

Balancing Neumann-Neumann Methods:

Theorem 6.4 The hybrid Schwarz method defined by the operator (6.10) and
the spaces and bilinear forms of this section satisfies

s(u,u) < S(Ph@llua u) < C(1+ IOg(H/h))zs(u>u),

where C' is independent not only of the mesh size and the number of substruc-
tures, but also of the values p; of the coefficient of (4.3).

Two Level FETI-DP Methods:
Theorem 6.35 (Algorithm B) The preconditioner Mp satisfies

(MpA, ) < (FpA, ) < C(1 +log(H/R)*(MpA, N, AeEV. (6.77)
Here C' is independent of h, H,~y, and the values of the p;.
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New 1: What about Helmholtz Problems?

All Classical DD Results are for Laplace-type Problems!
» Non-locality of solutions to (A + w?)u = f
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» Algebraic preconditioners with QMR: What is new in

w 5 10 15 20 o
QMR | 197 | 737 1775 | > 2000 Martin & Gander
ILUC'O") 60 | 370 | > 2000 —
ILU(1e-2) 22 80 20 | > 2000
» Multigrid method (see also Brandt, Lifshitz 1997!)
w Smoothing steps | 2.57 | 57 | 10x | 207 e 1
Iterative v=2 7 div | div | div
Preconditioner v=2 6 12 | 41 | 127
Iterative v=>5 7 |stag| div | div
Preconditioner v=>5 5 13 | 41 | 223
Iterative v =10 8 div | div | div
Preconditioner v =10 5 10 | 14 | 87
» Schwarz methods (see also Després 1991!)
w Overlap | 107 | 207 | 407 | 807 | 1607
Iterative h div | div | div | div | div
Preconditioner h 20 | 33 | 45 | 69 | 110
Iterative fixed div | div | div | div | div
Preconditioner | fixed 16 | 23 | 43 | 86 | 155

G, Ernst (2012): Why it is difficult to solve Helmholtz
problems with classical iterative methods



What is new in

New sweeping type DD preconditioners bD?

>

Martin J. Gander
Engquist and Ying (2011): Sweeping preconditioner
for the Helmholtz equation: moving perfectly matched
layers

Chen, Xiang (2013): A source transfer domain New DD Methods
decomposition method for Helmholtz equations in
unbounded domain | and Il

Stolk (2013): A rapidly converging domain
decomposition method for the Helmholtz equation

Zepeda-Niiez and Demanet (2018): Nested
domain decomposition with polarized traces for the 2D
Helmholtz equation

Graham, Spence, Zou (2020): Domain
decomposition with local impedance conditions for the
Helmholtz equation with absorption



All these are Optimized Schwarz Methods It
G, Zhang (2019): A class of iterative solvers for the Martin J. Gander

Helmholtz equation: Factorizations, sweeping
preconditioners, source transfer, single layer potentials,
polarized traces, and optimized Schwarz methods.

(A+w?)u=f inQ:=(0,1)x(0,Y)

AY
Y
-« O, o
. Xl Xy e
Subdomains: Q1 := (0, X{) x (0, Y), Q2 := (X4,1) x (0, Y)
(A+w?)uf = f in Qy, (A—I—w Juj = f in Qo
Bi(uf) = Bi(u Y at X{,  By(ug) = Bi(uf) at X

General transmission conditions of the form

Bi(u) := Opu+ S1(uv), Bé(u) = Op,U +Sé(u).



However their performance also deteriorates!

G, Magoules, Nataf (2002): Optimized Schwarz Methods
without Overlap for the Helmholtz Equation

Convergence factor is 1 — O(w_%)

~
y 0 0

Helmholtz solution in a cavity
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Helmholtz solution in a wave guide



However their performance also deteriorates?

G, Magoules, Nataf (2002): Optimized Schwarz Methods
without Overlap for the Helmholtz Equation

. 1
Convergence factor is 1 — O(w™%) 777
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Helmholtz solution in free space
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What is new in

Analysis of these new DD methods bD?
Martin J. Gander

G, Zhang (2022): Schwarz Methods by Domain
Truncation, Acta Numerica.

Classical Results

4
Bf(u) = g*
Y
Bl(u) = g'fe—" a B(u) = g’
2 —
X4 X7 N

0 1

B*(u) = g"

B(u) = 0yu+pu=g’ Ce{lrt b}



Dirichlet Top/Bottom, Vary Left/Right

Classical Schwarz
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Helmholtz free Space (9, + iw)u = 0 also TC
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Helmholtz free Space (9, + iw)u =0 OSM It
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Helmholtz free Space (0, + iw)u = 0 PML It
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Many many results in Acta Numerica 2022 S

" Martin J. Gander
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G, Tonnoir 2024: Schwarz for Convected Helmholtz Equations



New 2: Scalability and Coarse Spaces
Toselli and Widlund (2005): Classical view in DD

Therefore an iterative method for
the solution of the resulting linear system in which information is only ex-
changed between neighboring subregions must necessarily, for certain initial
errors, require a number of steps which is at least equal to the diameter of the
dual graph corresponding to the subdomain partition.

, In Sect. 5.4, we then
consider the problems of devising eflicient, coarse solvers, which are the key and
a quite delicate part of any successful preconditioners for three-dimensional
problems.

Y‘KV Q,J non-overlapping, and
€2; enlarged overlapping:
th ,,,,, AU,’J =f . in Q’J B
> uj = ug~ on 0 N Qy
Y
i
Yhi---- Y ~ ~ ~
j | ! < Qy Q; Q5™
| |
0 : : > «Ql Q> 93» -
! r r y X
Xi Xi X 0 XJ Xz X
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One level DD methods can be scalable!

One level Schwarz methods for Au = f are scalable with
Dirichlet conditions when adding subdomains like
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What is new in

One level DD methods can be scalable! DD?
One level Schwarz methods for Au = f are scalable with Wi . Ganiter
Dirichlet conditions when adding subdomains like

Q|| Q|| Q|| Q|| 25 || Q6 || Q7 || Q8

Ciaramella and G. (2017): Analysis of the parallel Schwarz

method for the solution of chains of particles, Part I-1ll MemesteTy
Three different proofs: Fourier in L2, maximum principle in

L> and alternating projection interpretation in H*

Chaouqui, Ciaramella, G, Vanzan (2018): On the
scalability of classical one-level domain-decomposition



What is new in

Eigenmodes of the Schwarz iteration operator bD?
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Hackbusch (1985): Multigrid methods and applications
Xu (1992): Iterative methods by space decomposition and
subspace correction

u]
|
I
i




PETSc comparison with HPYRE /BoomerAMG Moo

Martin J. Gander
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G, Van Criekingen (2020): New coarse corrections for
ORAS using PETSc



New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ w

up = ug + Atf(u())

up u1

»
!

to t1 b t3 ty ts tg tr tg to tio t11 t12

t
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New 3: Time Parallelization (PinT) Moo

Martin J. Gander
The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ w

us = uz + Atf(U3)

Causality Principle
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New 3: Time Parallelization (PinT) Moo

Martin J. Gander
The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ w

Us = ug + Atf(U4)

Causality Principle

Uy usz Ua

u
uy 5

to

» t

to t1 b t3 ty ts tg tr tg to tio t11 t12



New 3: Time Parallelization (PinT) Moo

Martin J. Gander
The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ w

U = Us + Atf(U5)
Causality Principle
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New 3: Time Parallelization (PinT) Moo

Martin J. Gander
The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9 = f(u), u(to) = up, Euler: 9 n tltni1)u(tn)

dt At
Upt1 = up + Atf(up,)

Causality Principle

ug U0 Y11l wugp
7

» t

to t1 b t3 ty ts tg tr tg to tio t11 t12

Domain decomposition in time ?



Heat Equation: Dirichlet and Neumann Conditions
up = U + f, u(0,t) = u(1,t) = 0 and uy(0,t) = ux(1,t) =0
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Transport Equation: Dirichlet and Periodic
ur +ux =f, u(0,t) =0 and u(0, t) = u(1,t)
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What is new in

Parabolic PinT: the Parareal Algorithm bD?

For solving the evolution problem Martin J. Gander

dwu(t) = F(t,u(t)) te(0,T],
u(0) = uf,

The time domain (0, T] is partitioned into subdomains
(Th—1, Tp], and Parareal needs two propagation operators:
1. G(tp,t1,u1) is a coarse approximation to the solution
u(ty) with initial condition u(t;) = uy,
2. F(tp,t1,u1) is a more accurate approximation of the
solution u(t2) with initial condition u(t;) = u;.
Parareal then starts with an initial coarse approximation U%
at To, T1,..., Ty, and computes

The Parareal Algorithm

UéH::u0
UNt=F(Tos1, Tn,UR)+G(Toy1, Tn, UR™) = G(Thy1, To, US)

Lions, Maday, Turinici (2001): Résolution d'EDP par un
schéma en temps “pararéel”



Heat example: lteration 1 S

Martin J. Gander
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Heat example: lteration 2
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Heat example: Iteration 3 Y
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Heat example:
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Heat example: lteration 5 S
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What is new in

Much better than Parareal: Heat eq. in 3D bD?

G, Neumiiller (2016): Space-Time Parallel Multigrid Martin J. Gander

cores | time steps dof iter | time fwd. sub.
1 2 50768 | 7 28.8 19.0
2 4 119536 | 7 290.8 37.9
4 8 239 072 7 29.8 75.9
8 16 478 144 7 29.9 152.2
16 32 956 288 7 29.9 305.4
32 64 1912576 | 7 29.9 613.6
64 128 3825 152 7 29.9 1220.7
128 256 7 650 304 7 29.9 24484
256 512 15300608 | 7 30.0 4882.4
512 1024 30 601 216 7 29.9 97442

1024 2048 61202432 | 7 30.0 19 636.9 i
2 048 4 096 122 404 864 7 29.9 38 993.1
4 096 8192 244 809 728 7 30.0 81 219.6
8192 16 384 489 619 456 7 30.0 162 551.0
16 384 32768 979238912 | 7 30.0 313 122.0
32768 65 536 1958477824 | 7 30.0 625 686.0
65 536 131 072 39016955648 | 7 30.0 || 1250210.0
131 072 262144 | 7833911296 | 7 30.0 || 2500 350.0
262 144 524 288 | 15667 822 592 7 30.0 4 988 060.0




Parareal advection example: lteration 1
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Parareal advection example: Iteration 2
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Parareal advection example: Iteration 3
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Parareal advection example: Iteration 4

3 3

2.5

Parareal

ut
i
N)
yel
)

What is new in
DD?

Martin J. Gander

Introduction
What is not new?

Classical Results

New 1: Helmholtz
Iterations fail

New DD Methods
Optimized Schwarz

Numerical Analysis

New 2: Scalability
1-Level Scalability

Better than MG!
Enrichment and SHEM

New 3: PinT
Causality Principle
The Parareal Algorithm
STMG

Tent Pitching
ParaDiag

Conclusion



Parareal advection example: Iteration 5
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Hyperbolic PinT: Mapped Tent Pitching (MTP) = ™%™"

Martin J. Gander
Gopalakrishnan, Schéberl, Wintersteiger (2017):
Mapped Tent Pitching Schemes for Hyperbolic Systems

“This paper explores a technique by which standard
discretizations, including explicit time stepping, can be used within
tent-shaped spacetime domains. The technique transforms the
equations within a spacetime tent to a domain where space and
time are separable.”

Tent Pitching

Gopalakrishnan, Hochteger, Schoberl, Wintersteiger
(2020): An Explicit Mapped Tent Pitching Scheme for
Maxwell Equations

Probably the best PinT Maxwell solver currently available!



What is new in

Red Black Schwarz Waveform Relaxation bD?
Martin J. Gander
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Second Iteration of RBSWR D

Martin J. Gander
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Third Iteration of RBSWR
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Fourth Iteration of RBSWR
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Red Black Schwarz Waveform Relaxation

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching
schemes by waveform relaxation
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Red iteration 1 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Black iteration 1 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Red iteration 2 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Black iteration 2 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Red iteration 3 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Black iteration 3 error
Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Red iteration 4 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

scheme:
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Black iteration 4 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching
scheme
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Red iteration 5 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching
scheme
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Black iteration 5 error

Ciaramella, G, Mazzieri (2023):
scheme
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[A,f,ue]=A11AtOnceSystem(n,m) ; Yhat s newin
[Rr,Rb,mtr,mtb]=RedBlackSubdomains(n,m,nx); Martin J. Gander

u=rand(m*n,1)-1/2;
for jr=1:mtr
for ir=1:nx
u=u+Rr{ir, jr}’*((Rr{ir, jr}*A*xRr{ir,jr}’)...
\(Rr{ir, jr}*(f-A*u)));
end;
U=reshape (ue-u,n,m);
surf (t,x,U); xlabel(’t’);ylabel(’x’); pause
if jr<=mtb
for ib=1:nx-1
u=u+Rb{ib, jr}’* ((Rb{ib, jr}*A*Rb{ib, jr}’)...
\ (Rb{ib, jr}*(f-A*u)));
end;
U=reshape (ue-u,n,m);
surf (t,x,U); xlabel(’t’);ylabel(’x’); pause
end
end;

Tent Pitching



ParaDiag Il on advection: Initial Guess

1.5

ParaDiag Il Error
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ParaDiag Il on advection: lteration 1
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ParaDiag Il on advection: lteration 2 S
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ParaDiag Il on advection: lteration 3 S
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Iterative Methods
and Preconditioners
for Systems

of Linear Equations

Gabriele Ciaramella
Martin J. Gander

Time Parallel
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Martin J. Gander
Felix Kwok

New book
(CIRM 2025)
Optimized
Schwarz Methods
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Martin J. Gander - Felix Kwok
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