What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

Vew 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

What is new in Domain Decomposition?

Martin J. Gander martin.gander@unige.ch

University of Geneva

Rouen, November 8, 2024

Rencontres Normandes sur les aspects théoriques et numériques des EDP

What is not new?

Toselli and Widlund (2005): Domain Decomposition Methods - Algorithms and Theory

Domain decomposition generally refers to the splitting of a partial differential equation, or an approximation thereof, into coupled problems on smaller subdomains forming a partition of the original domain. This decomposition may enter at the continuous level, where different physical models may be used in different regions, or at the discretization level, where it may be convenient to employ different approximation methods in different regions, or in the solution of the algebraic systems arising from the approximation of the partial differential equation. These three aspects are very often interconnected in practice.

This monograph is entirely devoted to the third aspect of domain decomposition.

Definition 1.2 (Optimality). An iterative method for the solution of a linear system is said to be optimal, if its rate of convergence to the exact solution is independent of the size of the system.

What is new in DD?

Martin J. Gander

Introduction

What is not new? Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability 1-Level Scalability Better than MG!

New 3: PinT Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Classical Results in Domain Decomposition

Two Level Schwarz Methods:

Theorem 3.13 In case exact solvers are employed on all subspaces, the condition number of the additive Schwarz operator satisfies

$$\kappa(P_{ad}) \le C\left(1 + \frac{H}{\delta}\right),$$

where C depends on N^c , but is otherwise independent of h, H, and δ .

Balancing Neumann-Neumann Methods:

Theorem 6.4 The hybrid Schwarz method defined by the operator (6.10) and the spaces and bilinear forms of this section satisfies

 $s(u,u) \le s(P_{hy1}u,u) \le C(1 + \log(H/h))^2 s(u,u),$

where C is independent not only of the mesh size and the number of substructures, but also of the values ρ_i of the coefficient of (4.3).

Two Level FETI-DP Methods:

Theorem 6.35 (Algorithm B) The preconditioner M_B satisfies

 $\langle M_B \lambda, \lambda \rangle \le \langle F_B \lambda, \lambda \rangle \le C(1 + \log(H/h))^2 \langle M_B \lambda, \lambda \rangle, \quad \lambda \in V.$ (6.77)

Here C is independent of h, H, γ , and the values of the ρ_i .

What is new in DD?

Martin J. Gander

Introductior

What is not new

Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

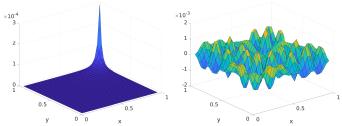
Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

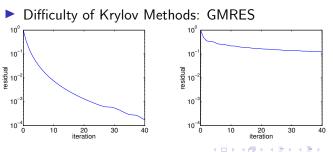
Conclusion

∋ na ∩

New 1: What about Helmholtz Problems? All Classical DD Results are for Laplace-type Problems!

• Non-locality of solutions to $(\Delta + \omega^2)u = f$





What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail

New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Algebraic preconditioners with QMR:

- 10 - 11 - P			~ ····	
ω	5	10	15	20
QMR	197	737	1775	> 2000
ILU('0')	60	370	> 2000	—
ILU(1e-2)	22	80	220	> 2000

Multigrid method (see also Brandt, Lifshitz 1997!)

0	(,
ω	Smoothing steps	2.5π	5π	10π	20π
Iterative	$\nu = 2$	7	div	div	div
Preconditioner	$\nu = 2$	6	12	41	127
Iterative	$\nu = 5$	7	stag	div	div
Preconditioner	u = 5	5	13	41	223
Iterative	u = 10	8	div	div	div
Preconditioner	u = 10	5	10	14	87

Schwarz methods (see also Després 1991!)

ω	Overlap	10π	20π	40π	80 π	160π
Iterative	h	div	div	div	div	div
Preconditioner	h	20	33	45	69	110
Iterative	fixed	div	div	div	div	div
Preconditioner	fixed	16	23	43	86	155

G, **Ernst (2012)**: Why it is difficult to solve Helmholtz problems with classical iterative methods

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail

New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

New sweeping type DD preconditioners

- Engquist and Ying (2011): Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers
- Chen, Xiang (2013): A source transfer domain decomposition method for Helmholtz equations in unbounded domain I and II
- Stolk (2013): A rapidly converging domain decomposition method for the Helmholtz equation
- Zepeda-Núñez and Demanet (2018): Nested domain decomposition with polarized traces for the 2D Helmholtz equation
- Graham, Spence, Zou (2020): Domain decomposition with local impedance conditions for the Helmholtz equation with absorption

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

All these are Optimized Schwarz Methods

G, Zhang (2019): A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods.

$$(\Delta + \omega^2)u = f \quad \text{in } \Omega := (0, 1) \times (0, Y)$$

Subdomains: $\Omega_1 := (0, X_1^r) \times (0, Y), \ \Omega_2 := (X_2^I, 1) \times (0, Y)$

 $\begin{array}{ll} (\Delta + \omega^2) u_1^n \,=\, f & \text{in } \Omega_1, & (\Delta + \omega^2) u_2^n \,=\, f & \text{in } \Omega_2 \\ \mathcal{B}_1^r(u_1^n) \,=\, \mathcal{B}_1^r(u_2^{n-1}) \text{ at } X_1^r, & \mathcal{B}_2^l(u_2^n) \,=\, \mathcal{B}_2^l(u_1^n) \text{ at } X_2^l \end{array}$

General transmission conditions of the form

 $\mathcal{B}_1^r(u) := \partial_{n_1} u + \mathcal{S}_1^r(u), \quad \mathcal{B}_2^l(u) := \partial_{n_2} u + \mathcal{S}_2^l(u).$

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

Vew 1: Helmholtz

Iterations fail

Optimized Schwarz

Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

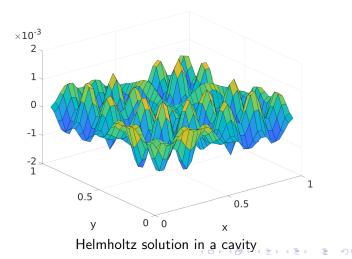
New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

However their performance also deteriorates!

G, **Magoules**, **Nataf (2002)**: Optimized Schwarz Methods without Overlap for the Helmholtz Equation

Convergence factor is $1 - O(\omega^{-\frac{1}{4}})$



What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods

Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

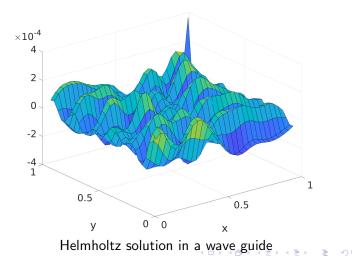
New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

However their performance also deteriorates?

G, **Magoules**, **Nataf (2002)**: Optimized Schwarz Methods without Overlap for the Helmholtz Equation

Convergence factor is $1 - O(\omega^{-\frac{1}{4}})$?



What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods

Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

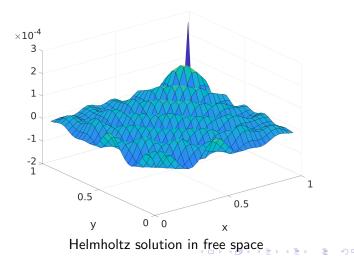
New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

However their performance also deteriorates?

G, **Magoules**, **Nataf (2002)**: Optimized Schwarz Methods without Overlap for the Helmholtz Equation

Convergence factor is $1 - O(\omega^{-\frac{1}{4}})$???



What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods

Optimized Schwarz Numerical Analysis

New 2: Scalability

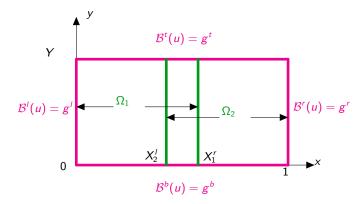
1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Analysis of these new DD methods

G, Zhang (2022): Schwarz Methods by Domain Truncation, Acta Numerica.



$$\mathcal{B}^{\ell}(u) := \partial_n u + p^{\ell} u = g^{\ell}, \quad \ell \in \{I, r, t, b\}$$

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz

Numerical Analysis

New 2: Scalability

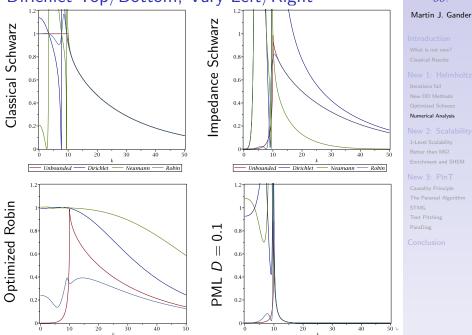
1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

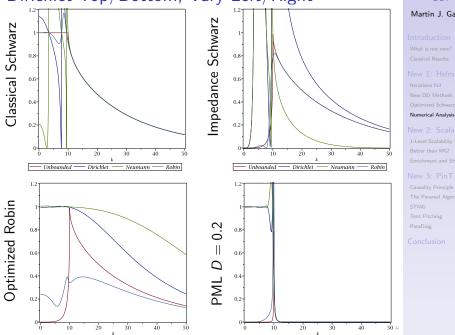
Conclusion

・ロト・西ト・田・・田・・日・ シック



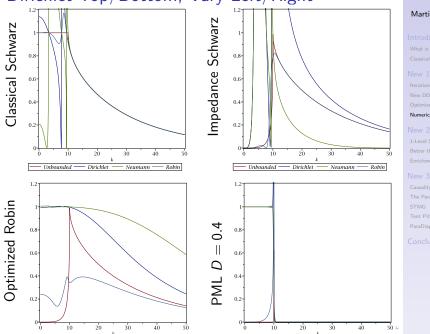
What is new in

DD?



What is new in DD?

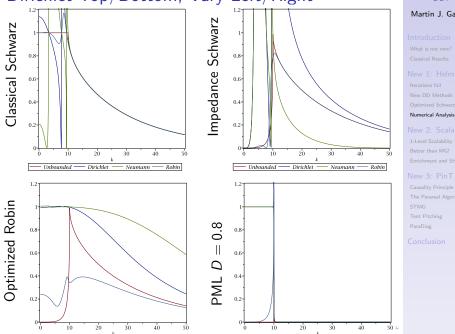
Martin J. Gander



What is new in DD?

Martin J. Gander

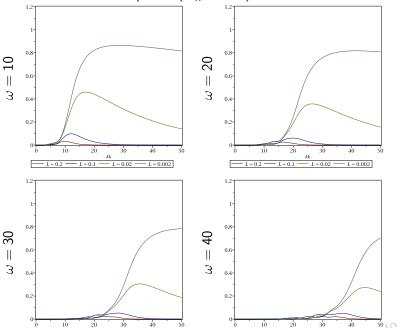
Numerical Analysis



What is new in DD?

Martin J. Gander

Helmholtz free Space $(\partial_n + i\omega)u = 0$ also TC



What is new in DD?

Martin J. Gander

Introduction

What is not nev Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz

Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

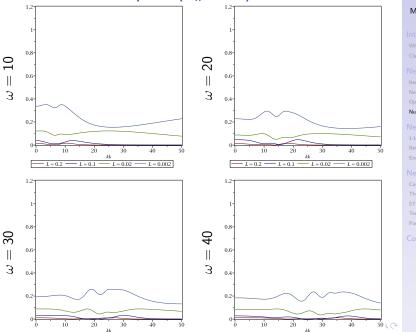
New 3: Pin

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

kk

Helmholtz free Space $(\partial_n + i\omega)u = 0$ OSM



What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz

Numerical Analysis

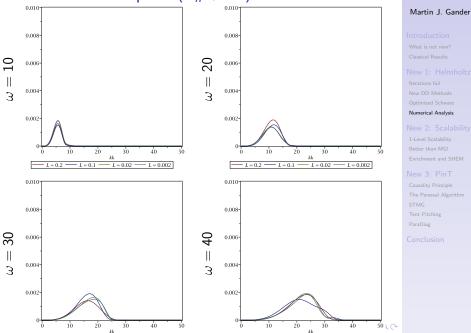
New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: Pin7

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

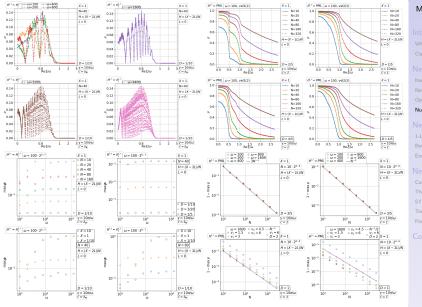
Helmholtz free Space $(\partial_n + i\omega)u = 0$ PML



What is new in

DD?

Many many results in Acta Numerica 2022



G, Tonnoir 2024: Schwarz for Convected Helmholtz Equations

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

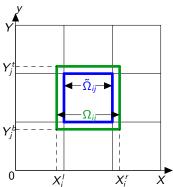
New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

New 2: Scalability and Coarse Spaces Toselli and Widlund (2005): Classical view in DD

Therefore an iterative method for the solution of the resulting linear system in which information is only exchanged between neighboring subregions must necessarily, for certain initial errors, require a number of steps which is at least equal to the diameter of the dual graph corresponding to the subdomain partition.

In Sect. 5.4, we then consider the problems of devising efficient coarse solvers, which are the key and a quite delicate part of any successful preconditioners for three-dimensional problems.



What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

Ω_1	Ω2	Ω3
------------	----	----

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

Ω ₁	Ω2	Ω ₃	Ω ₄
----------------	----	----------------	----------------

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

Ω ₁	Ω_2	Ω ₃	Ω ₄	Ω_5
----------------	------------	----------------	----------------	------------

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

Ω_1	Ω2	Ω ₃	Ω ₄	Ω_5	Ω ₆
------------	----	----------------	----------------	------------	----------------

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

Ω ₁	Ω2	Ω ₃	Ω ₄	Ω_5	Ω ₆	Ω7
----------------	----	----------------	----------------	------------	----------------	----

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

Vew 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

$$\begin{tabular}{|c|c|c|c|c|c|c|} \hline \Omega_1 & \Omega_2 & \Omega_3 & \Omega_4 & \Omega_5 & \Omega_6 & \Omega_7 & \Omega_8 \\ \hline \end{array}$$

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

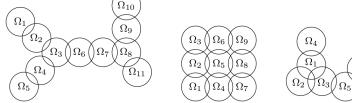
Conclusion

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

One level Schwarz methods for $\Delta u = f$ are scalable with Dirichlet conditions when adding subdomains like

Ω_1 Ω_2 Ω_3	Ω ₄ Ω ₅	Ω ₆	Ω ₇	Ω ₈
----------------------------------	-------------------------------	----------------	----------------	----------------

Ciaramella and G. (2017): Analysis of the parallel Schwarz method for the solution of chains of particles, Part I-III Three different proofs: Fourier in L^2 , maximum principle in L^{∞} and alternating projection interpretation in H^1



Chaouqui, Ciaramella, G, Vanzan (2018): On the scalability of classical one-level domain-decomposition

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

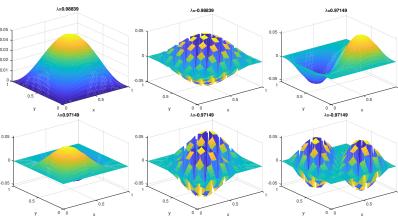
New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

 Ω_6

Eigenmodes of the Schwarz iteration operator



 \implies Should use discontinuous Q1 coarse space aligned with subdomains or relaxation parameter 2/3 in two level Schwarz

Hackbusch (1985): Multigrid methods and applications Xu (1992): Iterative methods by space decomposition and subspace correction

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

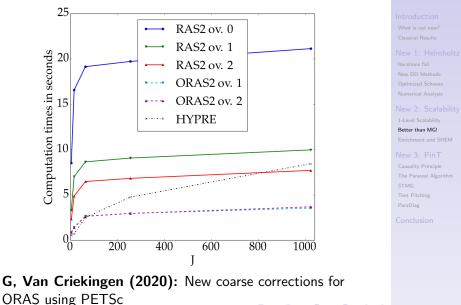
lterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

PETSc comparison with HPYRE/BoomerAMG



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

What is new in

DD? Martin J. Gander

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_1 = u_0 + \Delta t f(u_0)$
 u_1
 u_2
 u_1
 u_2
 u_2
 u_2
 u_1
 u_2
 u_2
 u_1
 u_1
 u_2
 u_2
 u_2
 u_2
 u_1
 u_1
 u_1
 u_2
 u

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_2 = u_1 + \Delta t f(u_1)$
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_2
 u_2
 u_3
 u_4
 u_5
 u_6
 u_7
 u_8
 u_9
 u_10
 u_11
 u_11
 u_12

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

Vew 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

t

・ロト・西ト・山田・山田・山口・

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_3 = u_2 + \Delta t f(u_2)$
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_1
 u_1
 u_1
 u_2
 u_3
 u_1
 u_2
 u_3
 u_3
 u_3
 u_1
 u_2
 u_3
 u_3
 u_3
 u_3
 u_3
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_3
 u_3
 u_3
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_3
 u_3
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_3
 u_3
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_2
 u_3
 u_3
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_2
 u_3
 u_3
 u_1
 u_1
 u_1
 u_2
 u_3
 u_3
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_2
 u_3
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_2
 u_2
 u_2
 u_1
 u_1
 u_1
 u_2
 u_2
 u_2
 u_2
 u_2
 u_3
 u_1
 u_1
 u_2
 u_2
 u_2
 u_2
 u_2
 u_1
 u_1
 u_1
 u_2
 u_3
 u_2
 u_2
 u_3
 u_2
 u_2
 u_3
 u_2
 u_2
 u_3
 u_2
 u_3
 u_2
 u_3
 u

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

Vew 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

t

・ロト・西ト・山田・山田・山口・

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_4 = u_3 + \Delta t f(u_3)$
 $u_4 = u_3 + \frac{1}{2} t_3 + \frac{1}{2} t_4 + \frac{1}{2} t_5 + \frac{1}{2} t_6 + \frac{1}{2} t_7 + \frac{1}{2} t_8 + \frac{1}{2} t_9 + \frac{1}{2} t_1 + \frac{1}{2} t_1$

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

t

・ロト・日本・山田・山田・

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_5 = u_4 + \Delta t f(u_4)$
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_5
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_5
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_1
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_1
 u_2
 u_1
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_1
 u_1
 u_1
 u_1
 u_2
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_2
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_1
 u_2
 u_1
 u_1
 u_1
 u_2
 u_1
 u_1
 u_2
 u_1
 u_1
 u_1
 u_1
 u_1
 u_2
 u_1
 u_1
 u_1
 u_1
 u_2
 u_1
 u_1

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

t

・ロト・西ト・山田・山田・山口・

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_6 = u_5 + \Delta t f(u_5)$
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_6
 t_0
 t_1
 t_2
 t_3
 t_4
 t_5
 t_6
 t_7
 t_8
 t_9
 t_{10}
 t_{11}
 t_{12}

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

t

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

New 3: Time Parallelization (PinT)

The time direction is special for parallelization, because of the *causality principle*: the solution later in time is determined by the solution earlier in time, and never the other way round.

Example:
$$\frac{du}{dt} = f(u), u(t_0) = u_0$$
, Euler: $\frac{du}{dt} \approx \frac{u(t_{n+1}) - u(t_n)}{\Delta t}$
 $u_{n+1} = u_n + \Delta t f(u_n)$
 u_1
 u_1
 u_2
 u_3
 u_4
 u_5
 u_6
 u_7
 u_8
 u_9
 u_{10}
 u_{11}
 u_{12}
 u_1
 u

Domain decomposition in time ?

What is new in DD?

Martin J. Gander

ntroduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

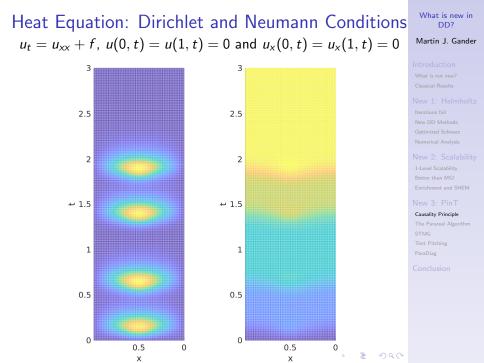
1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

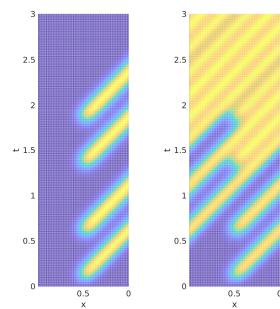
Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Conclusion

t



Transport Equation: Dirichlet and Periodic $u_t + u_x = f$, u(0, t) = 0 and u(0, t) = u(1, t)



What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

lterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

Parabolic PinT: the Parareal Algorithm

For solving the evolution problem

$$\begin{aligned} \partial_t \boldsymbol{u}(t) &= \boldsymbol{f}(t, \boldsymbol{u}(t)) \quad t \in (0, T], \\ \boldsymbol{u}(0) &= \boldsymbol{u}^0, \end{aligned}$$

The time domain (0, T] is partitioned into subdomains $(T_{n-1}, T_n]$, and Parareal needs two propagation operators:

- 1. $G(t_2, t_1, u_1)$ is a coarse approximation to the solution $u(t_2)$ with initial condition $u(t_1) = u_1$,
- 2. $F(t_2, t_1, u_1)$ is a more accurate approximation of the solution $u(t_2)$ with initial condition $u(t_1) = u_1$.

Parareal then starts with an initial coarse approximation \boldsymbol{U}_n^0 at T_0, T_1, \ldots, T_N , and computes

$$U_0^{k+1} := u^0, U_{n+1}^{k+1} := F(T_{n+1}, T_n, U_n^k) + G(T_{n+1}, T_n, U_n^{k+1}) - G(T_{n+1}, T_n, U_n^k)$$

Lions, Maday, Turinici (2001): Résolution d'EDP par un schéma en temps "pararéel"

What is new in DD?

Martin J. Gander

Introductior

What is not new Classical Results

New 1: Helmholtz

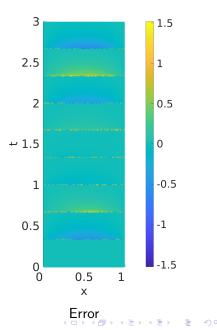
terations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

3 2.5 2 + 1.5 1 0.5 0 0 0.5 1 Х Parareal



What is new in DD?

Martin J. Gander

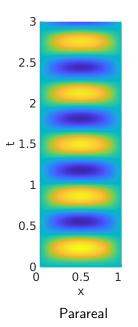
ntroduction What is not new? Classical Results Jew 1: Helmho

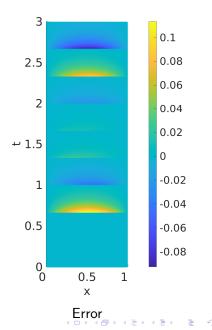
New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

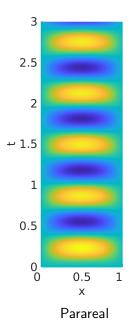


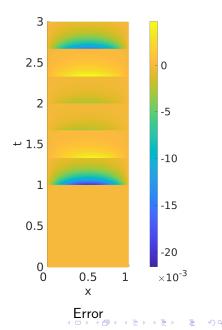


What is new in DD?

Martin J. Gander

Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
ParaDiag

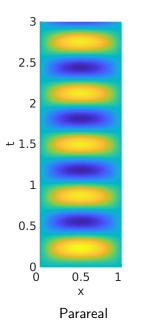


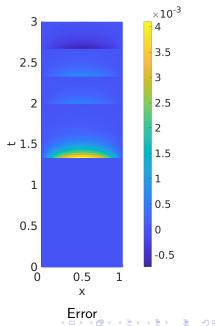


What is new in DD?

Martin J. Gander

What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
ParaDiag

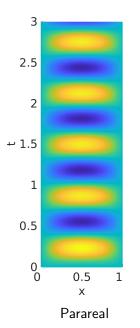


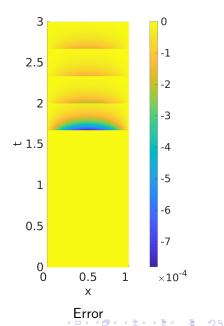


What is new in DD?

Martin J. Gander

What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching





What is new in DD?

Martin J. Gander

Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalabilit
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
ParaDiag

Much better than Parareal: Heat eq. in 3D

G, Neumüller (2016): Space-Time Parallel Multigrid

•	•	/ /			0
cores	time steps	dof	iter	time	fwd. sub.
1	2	59 768	7	28.8	19.0
2	4	119 536	7	29.8	37.9
4	8	239 072	7	29.8	75.9
8	16	478 144	7	29.9	152.2
16	32	956 288	7	29.9	305.4
32	64	1 912 576	7	29.9	613.6
64	128	3 825 152	7	29.9	1 220.7
128	256	7 650 304	7	29.9	2 448.4
256	512	15 300 608	7	30.0	4 882.4
512	1 024	30 601 216	7	29.9	9 744.2
1 024	2 048	61 202 432	7	30.0	19 636.9
2 048	4 096	122 404 864	7	29.9	38 993.1
4 096	8 192	244 809 728	7	30.0	81 219.6
8 192	16 384	489 619 456	7	30.0	162 551.0
16 384	32 768	979 238 912	7	30.0	313 122.0
32 768	65 536	1 958 477 824	7	30.0	625 686.0
65 536	131 072	3 916 955 648	7	30.0	1 250 210.0
131 072	262 144	7 833 911 296	7	30.0	2 500 350.0
262 144	524 288	15 667 822 592	7	30.0	4 988 060.0

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

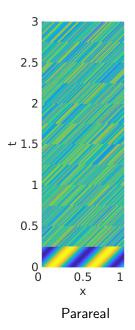
New 1: Helmholtz

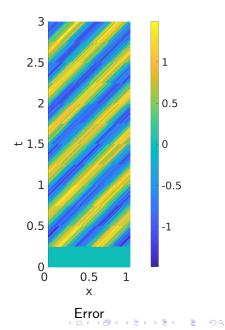
Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle The Parareal Algorithm STMG Tent Pitching ParaDiag

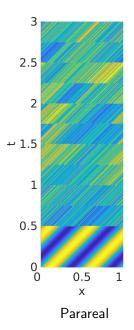


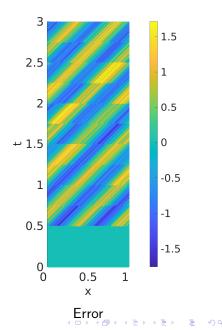


What is new in DD?

Martin J. Gander

What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
D D:



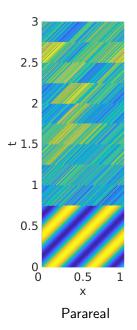


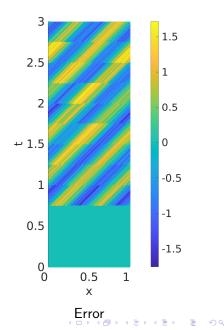
What is new in DD?

Martin J. Gander

Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching

ParaDiag



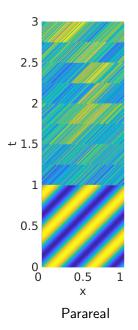


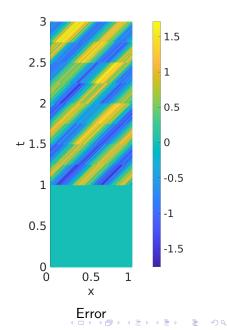
What is new in DD?

Martin J. Gander

New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG

Tent Pitchin ParaDiag



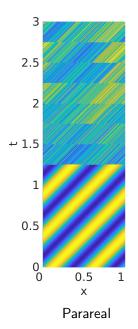


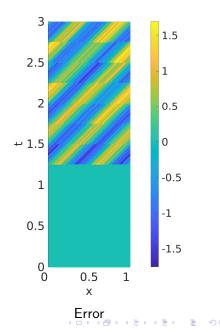
What is new in DD?

Martin J. Gander

New 2: Scalabilit I-Level Scalability Better than MG! Enrichment and SHEM New 3: PinT Causality Principle The Parareal Algorithm STMC

ParaDiag





What is new in DD?

Martin J. Gander

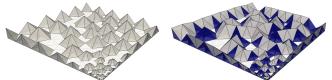
What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching

C

Hyperbolic PinT: Mapped Tent Pitching (MTP)

Gopalakrishnan, Schöberl, Wintersteiger (2017): Mapped Tent Pitching Schemes for Hyperbolic Systems

"This paper explores a technique by which standard discretizations, including explicit time stepping, can be used within tent-shaped spacetime domains. The technique transforms the equations within a spacetime tent to a domain where space and time are separable."



Gopalakrishnan, Hochteger, Schöberl, Wintersteiger (2020): An Explicit Mapped Tent Pitching Scheme for Maxwell Equations

Probably the best PinT Maxwell solver currently available!

What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

terations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

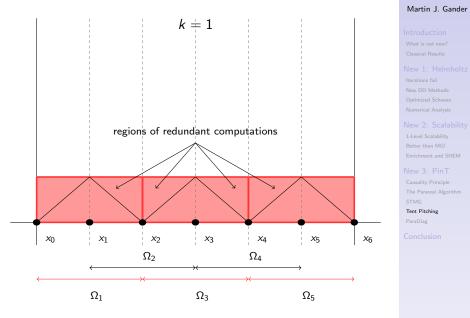
New 3: PinT

Causality Principle The Parareal Algorithm STMG Tent Pitching

ParaDiag

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

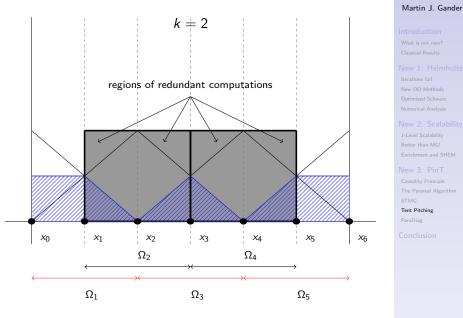
Red Black Schwarz Waveform Relaxation



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is new in DD?

Second Iteration of RBSWR

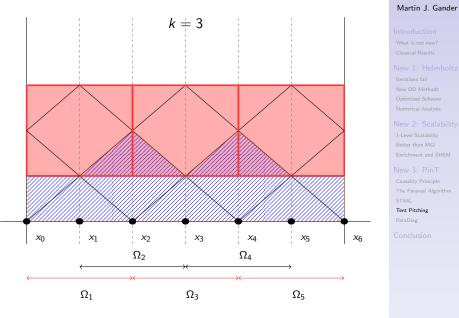


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is new in

DD?

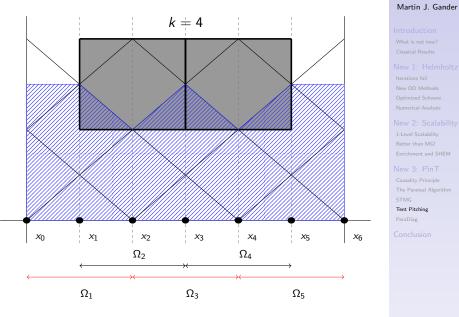
Third Iteration of RBSWR



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What is new in DD?

Fourth Iteration of RBSWR

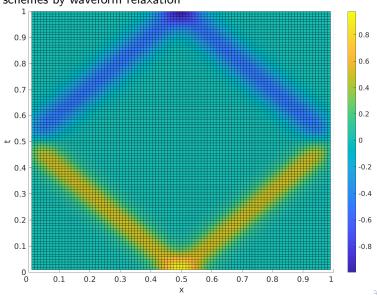


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What is new in DD?

Red Black Schwarz Waveform Relaxation

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching schemes by waveform relaxation



What is new in DD?

Martin J. Gander

Introductio

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

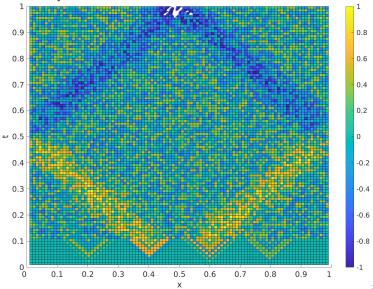
New 3: PinT Causality Principle The Parareal Algorithm STMG

Tent Pitching ParaDiag

Red iteration 1 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



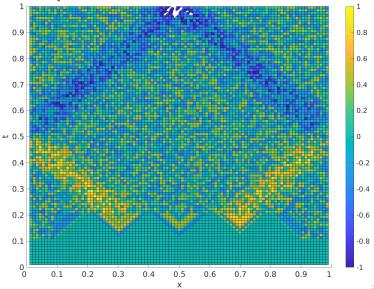
What is new in DD?

Martin J. Gander

Black iteration 1 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



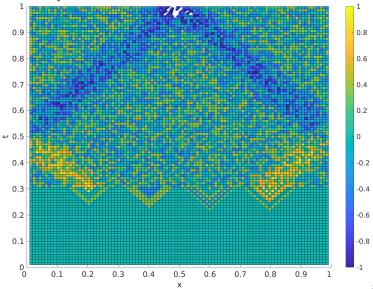
What is new in DD?

Martin J. Gander

Red iteration 2 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



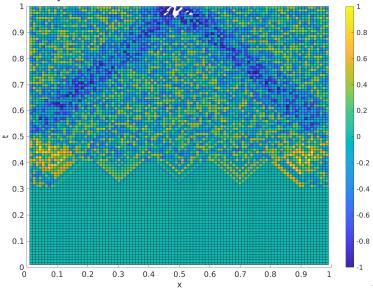
What is new in DD?

Martin J. Gander

Black iteration 2 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle

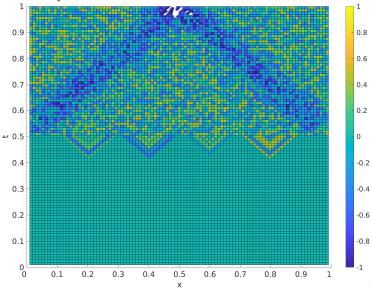
STMG

Tent Pitching ParaDiag

Red iteration 3 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle

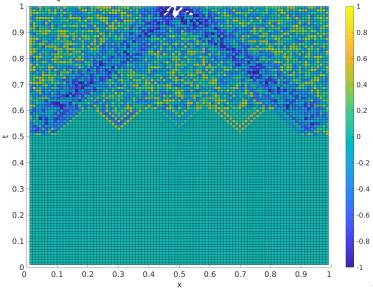
STMG Tent Pitching

ParaDiag

Black iteration 3 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



What is new in DD?

Martin J. Gander

What is not new? Classical Results lew 1: Helmhc terations fail

New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle The Parareal Algorith

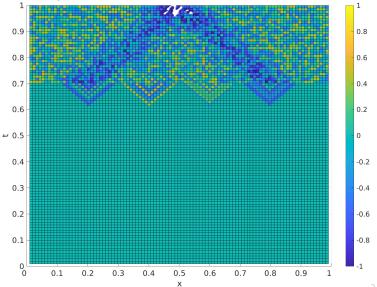
STMG Tent Pitching

ParaDiag

Red iteration 4 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



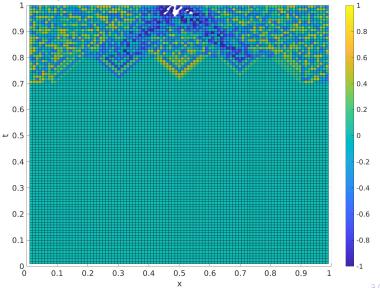
What is new in DD?

Martin J. Gander

Black iteration 4 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation



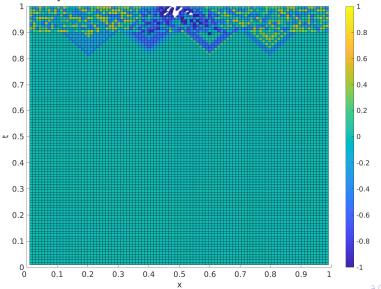
What is new in DD?

Martin J. Gander

Red iteration 5 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

schemes by waveform relaxation

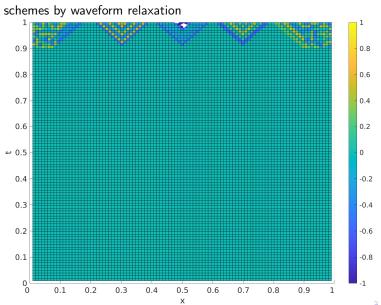


What is new in DD?

Martin J. Gander

Black iteration 5 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching

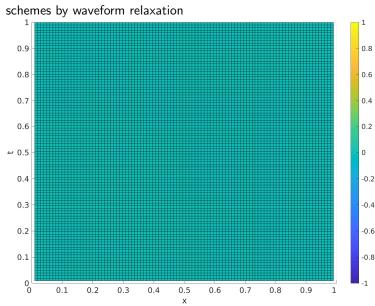


What is new in DD?

Martin J. Gander

Red iteration 6 error

Ciaramella, G, Mazzieri (2023): Unmapped tent pitching



What is new in DD?

Martin J. Gander

Introduction

What is not new Classical Results

New 1: Helmholtz

Iterations fail New DD Methods Optimized Schwarz Numerical Analysis

New 2: Scalability

1-Level Scalability Better than MG! Enrichment and SHEM

New 3: PinT Causality Principle The Parareal Algorith

STMG Tent Pitching

ParaDiag

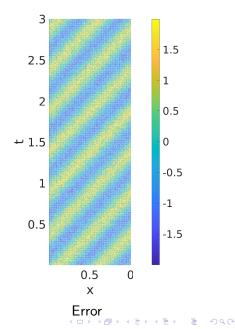
```
[A,f,ue]=AllAtOnceSystem(n,m);
[Rr,Rb,mtr,mtb]=RedBlackSubdomains(n,m,nx);
u=rand(m*n,1)-1/2;
for jr=1:mtr
  for ir=1:nx
    u=u+Rr{ir,jr}'*((Rr{ir,jr}*A*Rr{ir,jr}')...
      (Rr{ir, jr}*(f-A*u)));
  end;
  U=reshape(ue-u,n,m);
  surf(t,x,U); xlabel('t');ylabel('x'); pause
  if jr<=mtb
    for ib=1:nx-1
      u=u+Rb{ib,jr}'*((Rb{ib,jr}*A*Rb{ib,jr}')...
        (Rb{ib, jr}*(f-A*u)));
    end:
    U=reshape(ue-u,n,m);
    surf(t,x,U); xlabel('t');ylabel('x'); pause
  end
end:
                              ◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@
```

What is new in

Martin J. Gander

ParaDiag II on advection: Initial Guess



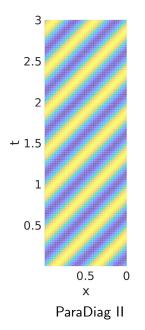


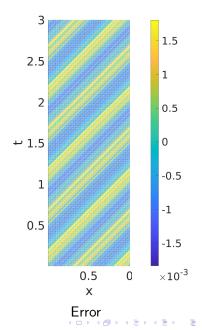
What is new in DD?

Martin J. Gander

What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
ParaDiag

ParaDiag II on advection: Iteration 1



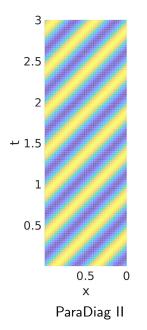


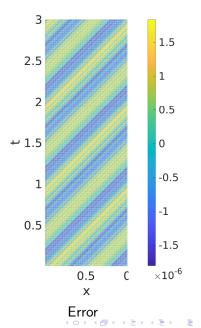
What is new in DD?

Martin J. Gander

What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
ParaDiag

ParaDiag II on advection: Iteration 2





What is new in DD?

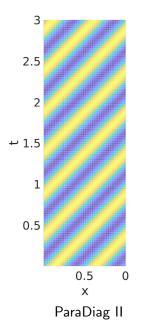
Martin J. Gander

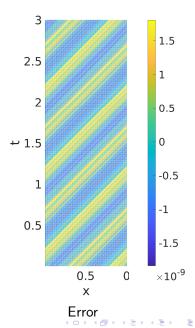
What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle

Causality Principle The Parareal Algorithn STMG Tent Pitching

ParaDiag

ParaDiag II on advection: Iteration 3





What is new in DD?

Martin J. Gander

What is not new?
Classical Results
Iterations fail
New DD Methods
Optimized Schwarz
Numerical Analysis
New 2: Scalability
1-Level Scalability
Better than MG!
Enrichment and SHEM
New 3: PinT
Causality Principle
The Parareal Algorithm
STMG
Tent Pitching
ParaDiag

. . .

(ロ) (個) (目) (目) (日) (の)