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Introduction

Fluid-like models of tissue growth

oo+ V- (ov) = oG(p),
p=f'(o).

Reaction rate: G € C', G(0) > 0, G’ < 0.

e

e Pressure law: p = 07,7 > 1, p:sl e >0,
e Darcy's law: v = —Vp,

e Brinkman’s law: —vAv +v = —Vp, v > 0.

We will consider: v = —=VW, with —vAW + W = p.



Singular limits

Brinkman’s law Darcy’s law/PME
Oo =V - (VW) = 0G(p), 90—V - (eVp) = 0G(p),
—vAW+ W = p, v—0 p=o'.
_—
p=o".
Oo =V - (VW) = oG(p), 90—V - (eVp) = 0G(p),
—VAW+ W= p, )

, p(Ap+G(p)) = 0.
p(AW + G(p)) = 0.

Incompressible Brinkman Incompressible Darcy/Hele-Shaw
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(Short) literature review

Incompressible limit

e v=20, : From PME to HS: Perthame, Vazquez, Quirds (2014)

o v >0, : From compressible to incompressible Brinkman: Debiec,
Perthame, Schmidtchen, Vauchelet (15, '20-'21)

Inviscid limit

e v — 0,y > 1. From compressible Brinkman to PME: D., Debiec, Mandal,
Schmidtchen ('23) [y = 1], Elbar, SkrzeczkowsRi ('23) [y > 1]

Entropy/Energy (in)equalities, strong compactness of W,,, p, through
pressure’s equation:

op = yp(AW + G(p)) + Vp - VW



Open questions

0o — V- (eVW) = 0G(p), o —V - (oVp) = 0G(p),
—vAW+ W = p, v—0 p:gw‘
p = ny. Ny '
N
N
N
v—0"> N\ Y —~ oo
AN
N
N
N\
o — V- (oVW) = 0G(p), 9o — V- (eVp) = oG(p),
—vAW+ W = p, v—0 )
——————— >

, p(Ap +G(p)) = 0.
p(AW +G(p)) = 0.

Joint limit? Inviscid for v = co?



Assumptions: approximating sequence f,, p. € 9f.(ov)
The family of energy dissipation inequalities
A priori estimates: weak compactness of (gup.)v>0

Strong compactness of (VW,)u>o
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Family of energy functions:

e Forallv > 0,f, : R —» RU{+o0} is a lower semi-continuous, convex
function, and f, (0) = 0,

e f, converges pointwise to fo.

Example

N

v 11 ’
fu(o) = V+19"+, /(o) =

As v — 0 it converges to the incompressible energy

0, forp<1
fo(e) =

400, foro>1.

Remark: we can take f, = fo.

Initial data: o™ > 0, o™ € L*(RY) N L>=(RY), |x|?o™ € L}(RY).
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Goal:
8t@u -V (QVVWV) = QVG(pV)v

0o — V- (6Vp) = 0G(p),
—vAW, + W, =p, € dfu(ov), v —0

p € 9fo(0)

pvov = fu(ov) +1(pv), po = fo(o) +fo(p).

Recall: f*(b) = sup, ab — f(a).

b, forb >0, , 1, forb>0,
b) = b) =
fo(®) {O, forb <0, o (b) {0, forb <o0.

A priori estimates: g, p, € L°(0, T; L*(RY) N L>(RY)) uniformly v > 0, thus

Ql/ - Q7 pV - p
Moreover

W, =K, *xp, — p.
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Theorem: Energy dissipation inequality.

Letz: R — R U {400} be a convex function, and h, : R — R such that

b Z"(S)

- by /2 (S)

h.,(b) ds, for some by € R.

Then

[etier-2enm+ [ [ Zwmyrwwr < [ [ Heoese)

0

+ [ (eohii) =2 ()0

Remark:
e 0.0, (p,) —Z(p.) > —Z'(bo) therefore we can guarantee its positivity,
o still need to say something about [[ h},(p.)o.G(py).

Idea of the proof: test the equation against hy,(p. ), notice: h!/(p.)o. =z (p.)
but use the regularised equation: dip — eAp — V - (oVW) = oG(p).
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Internal energy dissipation

Choose: 27 = f} , then h,(p.) = p. = f,,(0.) and obtain
T T
’ 2
[teom+ [ [ mwgow< [ [ poce)+ [ Ao

This is the equivalent of the energy equality for Darcy’s law

Ej@m+lﬂﬂwwzﬁﬁf”m+éﬂﬂm

The PME is a W»-gradient flow with respect to the internal energy
Flo)= | oo
Rd

namely

Indeed 6’;—(@@) =f(o) = p, hence



Entropy dissipation

Choose: 2”7 = f3”, then h,,(p.) = In(f}’(p.)) = In @, and obtain

H(gy)(T)+/o AN S/O/Rd In 0000 G(py) + H(0v)(0)
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Entropy dissipation

Choose: 2”7 = f3”, then h,,(p.) = In(f}’(p.)) = In @, and obtain

He)M+ [ [ mrwvw < [ moede) +He)o)

0

where
H(@)=/ elng—o.
JRA

Remark. g, In g, € L'(0,T; L*(R%)) uniformly in v > 0 because the second
moment control propagates in time

sup sup IX|? 0, < 400.
v>0te[0,T] JRI
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Energy dissipation inequality

Choose: 2/ =1, then h,(p.) = [ f;,%ds and obtain

/Rd(@m;(pu) —Z(p)(T) + /OT/Rd VAW, 2 + /OT/Rd oW P

< [[ eiesw)+ [ @hie) -2 600,

// h,(p.)Vpy - 0. VW, = —//z’(p,,)AWV
[

_ //(fVAWV +W,)AW,

- //V\AW,,|2 VWL

because
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Compactness of the product

Lemma

The following holds uniformly in v > 0
- VVAW, € 12(0,T; L2(RY)),
- W, € L2(0,T; H'(RY)),
- Brow € L2(0, T; HTH(RY)).
Moreover

oupy — op weaKly in L*(0, T; L*(RY)).

Proof. By Brinkman's law

pp — W, = —vAW, — 0.

/ Puvovp = //(Wugu —vAW,0u)p — //PQ%

and since o, p,, are uniformly bounded in any L?, we conclude.

Hence
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Convergence of f*(W,)

Up to a subsequence

fulev) = fole), fulpv) =fo(p), fo(Wo) — fo(p).

Proof. We know

fulev) +fu(pv) = 0vpu — op < fo(o) + fo(p).
Since
fo(e) < liminff, (o.), fo(p) <liminff}(p,),

then
fulov) = fole),  fulpv) = fo(p).
Finally, we compute
2 (pv) = fo(Wo)| < £ (max(p, Wo)) Py — Wo|
< llevllcclpy = Wy | = 0.
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Compactness of Vw,,

We know: oy — 0, pp—p in 22 W, —p in[2H!,
and 0o VW, = m, 0,G(p,) = R in L?[2.
Then, we have oo—V-m=R.

We need to prove: m = oVp,

(strong compactness of VW, and p, will follow).

We do this by showing
2 2 d
// Imf* , elVoP g//m-Vp.

Idea: EDI formulation of gradient flows (Sandier-Serfaty).

Problem: The Brinkman equation is not a gradient flow!
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Compactness of VW,: proof

We show that

(1) // ';”‘ < Timinf //f‘ IVW, [2
) // dvel lim inf - //f* )W, |2
(3) //mVDzlirynjgp//f* V)| VW, |2

To prove (3) we compare

/fu QV //f;( |VW| /0/ p.0,G ,Dy /fy Qu
and
/Rdfog T)+/OT/Rdm-Vp:/OT/deRjt/RdfO(g)(o)

In [D., Debiec, Mandal, Schmidtchen, SIMA 24], we had p, = f'(¢.) = 0. and
the entropy dissipation gives [[ [VW,|?.
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Compactness of VW,: proof
// ImP* <hm1nf //ﬁ, )| VW, 2.
20

Main idea: estimate how "far” 3/ (W, ) is from o,.
Issues: f;,(W,) — fo(p), but what about f;/(W,)? f;/ can be discontinuous!
Hence, despite p, — W, — 0, 0, :f‘;’(pu) can be very different from £/ (W,,).

If we had o, (take ¢ smooth vector field

5[] edvwp //guvw ¢ sl
%//m'C*EQK‘ :

limsup — // )| VW, \ <0.
v—0

Remark. For f, = fo it is trivial: W,, > 0 and f5(b) = (b)4+, while g, < 1.

Need to show



Compactness of VW,: proof
// ImP* <hm1nf //ﬁ, )| VW, 2.
20

Main idea: estimate how "far” f;'(W,) is from g,.
Issues: f;,(W,) — fo(p), but what about £’ (W,,)? f} can be discontinuous!
Hence, despite p, — W, — 0, o, :)“f,’(p,,) can be very different from f;' (W,,).

If we had o, (take ¢ smooth vector field

//QV\VW 2 //QVVW C—*QVICI
—>//m-4—59\4\ .

limsup - // NIVW,|* <o.
v—0

folpy +6) = fi(pv)
5 .

Need to show

Idea: estimate p, from above g, <
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o fiis(b) < infofy(b), so fls (Wo) < f/ (Wo),
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Compactness of VW,: proof
//lem < lim 1nf //f,i VW, 2.

We use Young's inequality and integration by parts

5 [[Fawawew = [[gsmpew, ¢ 3 [[fswer

—— [[Rswv - [[ el +te - Hlawicr?
= [[f@ve-c— 5 [[ e
Main idea: again, we need.to estimate how “ﬂ:jr” fil(W,) is from g,.
It's again a matter of estimating [[ (. — fi'(W.))|¢|?, but from below.
Use the inf-convolution f;; 5(b) := infc f; () + 55 |c — b|* which satisfies

e f1/s(b) <infofy(b),so fls(Wo) < fi/(Wo), and @v = 3/ (pv) > fLls(Pu),
o fisis %—Wm’, and |p, — W,| — 0.



Conclusion

dro — V- (oVW) = 0G(p), do—V - (oVp) = 0G(p),
—VvAW+ W = p, v—0 p=o"
5 >
p=o'
v—0
o —V - (oVW) = 0G(p), 0o — V- (0VD) = 0oG(p),
—vAW+ W = p, v—0 ,

N~

, p(Ap +G(p)) = 0.
p(AW + G(p)) = 0.

Thank you for your attention!
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Compactness of VW,: proof

Main idea: estimate how "far” f;’ is from o,.

//“2”; < liminf > //f; DIVW, 2.

Let ¢ be a smooth, compactly supported, vector field and let 0 < g(x) < %
and 2% < o0 as |x| — oc.

x|
%//mkuf > // 0,.q(VW,)
> // 0.,¢- VW, — 0.9%(0)
—>//<~m—pq*(<)
> ff (%),

If we had o,

take g — |x|?/2 and conclude.
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Remark. For f, = fo itis trivial, since W,, > 0 and f;,(b) = (b)+, while g, < 1.

Idea of the proof: estimate p, from above: since g, € 9f;(p.)

fo(py +9) —fi(pv)
ov < 5 .
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Compactness of VW,: proof

i % //(au = (W.))a(VW,) < 0.

Issues: f; (W,) — o, but what about f;/(9,)?? It can be discontinuous!
Hence, even though p, — W, — 0 strongly, o, = f;/(p.) can be very different
from £/ (W,,).

Remark. For f, = fo itis trivial, since W,, > 0 and f;,(b) = (b)+, while g, < 1.

Idea of the proof: estimate p, from above: since g, € 9f;(p.)

£o(py +8) ~ fi(py)

]/<
O = 5

We want

hrn hrl?jgp // ( v(Py + 6 —fv(py) fﬁ,'(W,,)) q(VW,) <0
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Compactness of VW,: proof

lm s : / / (0 — F/ (W,))q(VW,) < 0,

Issues: f; (W,) — o, but what about f;/(9,)?? It can be discontinuous!
Hence, even though p, — W, — 0 strongly, o, = f;/(p.) can be very different
from £/ (W,,).

Remark. For f, = fo itis trivial, since W,, > 0 and f;,(b) = (b)+, while g, < 1.

Idea of the proof: estimate p, from above: since g, € 9f;(p.)

£opy+8) = Fo(py)

ov < 5
We want

+§// (fk W"”&‘m W.) —f’i/(Wu)> 4(VW,) <0

21



Compactness of VW,: proof

Foralld >0
— (fs(pu 0 = fip) _ Lo +9) —f‘;(vm) ATW) = 0

v—0

since p, — W, — 0 strongly in L?[2.
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Compactness of VW,: proof

Foralld >0
— (ﬁ(pu 0 = fip) _ Lo +9) —f’;(vm) ATW) =0

v—0

since p, — W, — 0 strongly in L?[2.

Assume f; concave on (0, +o00) (e.g. the power law). Then,

%// (ﬁi(vvy +5§ - (W) ,f;’(wu)) q(VW,) < 6//]";”(Wu)q(va) < Cs,

with C uniform in v > 0. We used the entropy dissipation inequality

//f”’ ) |VW, |2 < C.
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Compactness of VW,: proof

2
@[] L <umipe s [[ oo
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Compactness of VW,: proof
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We use Young's inequality and integration by parts
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— [[rwov-c- [[rwr
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2
// alvel® < hmlnf //f; VW, 2.

We use Young's inequality and integration by parts

o [[Ewaewr = [[rwpvw -5 [[Ewee
- [[fwv -5 [[mmie

Main idea: again, we need to estimate how “far” f;/(W,) is from g,.
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We use Young's inequality and integration by parts

o [[Ewaewr = [[rwpvw -5 [[Ewee
- [[rwav-c- 5 [[ e

Main idea: again, we need to estimate how “far” f;/(W,) is from g,.
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Compactness of VW,: proof
2
// alvel® < hmlnf //f; VW, 2.

We use Young's inequality and integration by parts

o [[Ewaewr = [[rwpvw -5 [[Ewee
== [[rwv -3 [[ e
o= [[REvc—g [[ oo
— [[ewp-c— [[ et

Main idea: again, we need to estimate how “far” f;/(W,) is from g,.
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Compactness of VW,: proof
2
// alvel® < hmlnf //f; VW, 2.

We use Young's inequality and integration by parts

o [[rwawwr = [[rwyew -5 [[Ewee

= [[rwvec- [[ el +e - £/ wir

o [[rev-c- 2 [[ o
://J‘Eﬁ’(p)Vp~<—%//Qlé’l2

Main idea: again, we need to estimate how “far” f;/(W,) is from g,.

It's again a matter of estimating [/ (o, — f3'(W.))|¢|?, this time from below.
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Compactness of VW,: proof

//QW"' < liminf 1 //f“ IV, 2.

Proof. Take the inf-convolution f; s, in particular f;/5(b) < inf df; ().

o [ Fawarew = [[gsmpew, ¢ 3 [[ e
— [[ Fes)v = 50kl + [ [ e~ RmIP
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Compactness of VW,: proof

//"'Vm < liminf - //f“ )IVW, 2.

Proof. Take the inf-convolution f; s, in particular f;/5(b) < inf df; ().

o [ Fawarew = [[gsmpew, ¢ 3 [[ e

— [[ Fes)v = 50kl + [ [ e~ RmIP
— [[Ew) ~fswv -+ [[ 09 ¢= Jor
/]( Rl WG
Goal:

lims o lim inf,—o [ (5 (Wo) = £ s(Wo))V - ¢+ [[ (0w — £ls(Wo))I¢* > 0.

24



Compactness of VW,: proof

Goal:

lims o liminf, o [f(Fs(Wo) — 55 W)V - + [[ (00 — Fs(W))[CI> > 0.
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Compactness of VW,: proof

Goal:

lims o liminf, o [f(Fs(Wo) — 55 W)V - + [[ (00 — Fs(W))[CI> > 0.

The inf-convolution is given by
. LNPRNT
fo.5(b) = Clgﬂgf;(c) + %|C b[7,

and

fiis(b) < infof;(b).
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Compactness of VW,: proof

Goal:

lims o liminf, o [f(Fs(Wo) — 55 W)V - + [[ (00 — Fs(W))[CI> > 0.

The inf-convolution is given by

. 1 o
fr.5(b) = inffi(c) + 55lc = bI%,

and
fi's(b) < infdf;, (b).
We have 5 5
S W) = F2s W)l < IR W) < Sllew i,
and

00 = Fl5Wo) = £ (pu) = Fs(Wo) 2 Fls(p0) = Fils(We) 2 =3 1pu = Wa = 0.
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