Joint inviscid-incompressible limit for tissue growth models: from Brinkman's law to Hele-Shaw

Noemi David

Joint work (in progress) with Matt Jacobs and Inwon Kim

Rencontres normandes sur les aspects théoriques et numériques des EDP November 4th - 8th - Rouen

Fluid-like models of tissue growth

$$\partial_t \varrho + \nabla \cdot (\varrho \mathbf{v}) = \varrho G(p),$$

 $p = f'(\varrho).$

Fluid-like models of tissue growth

$$\partial_t \varrho + \nabla \cdot (\varrho \mathbf{v}) = \varrho G(p),$$

 $p = f'(\varrho).$

Reaction rate: $G \in C^1$, G(0) > 0, $G' \le 0$.

Fluid-like models of tissue growth

$$\partial_t \varrho + \nabla \cdot (\varrho \mathbf{v}) = \varrho G(p),$$

 $p = f'(\varrho).$

Reaction rate: $G \in C^1$, G(0) > 0, $G' \le 0$.

• Pressure law: $p=\varrho^{\gamma}, \gamma\geq 1, \quad p=\varepsilon \frac{\varrho}{1-\varrho}, \, \varepsilon>0,$

Fluid-like models of tissue growth

$$\partial_t \varrho + \nabla \cdot (\varrho \mathbf{v}) = \varrho G(p),$$

 $p = f'(\varrho).$

Reaction rate: $G \in C^1$, G(0) > 0, $G' \le 0$.

• Pressure law: $p = \varrho^{\gamma}, \gamma \ge 1$, $p = \varepsilon \frac{\varrho}{1 - \rho}$, $\varepsilon > 0$,

Fluid-like models of tissue growth

$$\partial_t \varrho + \nabla \cdot (\varrho \mathbf{v}) = \varrho G(p),$$

 $p = f'(\varrho).$

Reaction rate: $G \in C^1$, G(0) > 0, $G' \le 0$.

- $\bullet \ \ \text{Pressure law:} \ p=\varrho^{\gamma}, \gamma\geq 1, \quad \ p=\varepsilon\frac{\varrho}{1-\varrho}, \, \varepsilon>0,$
- Darcy's law: $v = -\nabla p$,
- Brinkman's law: $-\nu \Delta v + v = -\nabla p$, $\nu > 0$.

Fluid-like models of tissue growth

$$\partial_t \varrho + \nabla \cdot (\varrho \mathbf{v}) = \varrho G(p),$$

 $p = f'(\varrho).$

Reaction rate: $G \in C^1$, G(0) > 0, $G' \le 0$.

- $\bullet \ \ \text{Pressure law:} \ p=\varrho^{\gamma}, \gamma \geq 1, \quad \ p=\varepsilon \frac{\varrho}{1-\varrho}, \, \varepsilon > 0,$
- Darcy's law: $v = -\nabla p$,
- Brinkman's law: $-\nu \Delta v + v = -\nabla p$, $\nu > 0$.

We will consider: $\mathbf{v} = -\nabla W$, with $-\nu \Delta W + W = p$.

Singular limits

Brinkman's law

$$\partial_{t}\varrho - \nabla \cdot (\varrho \nabla W) = \varrho G(p),$$

$$-\nu \Delta W + W = p,$$

$$p = \varrho^{\gamma}.$$

$$\gamma \to \infty$$

$$\partial_{t} \varrho - \nabla \cdot (\varrho \nabla W) = \varrho G(p),$$

$$-\nu \Delta W + W = p,$$

$$p(1 - \varrho) = 0,$$

$$p(\Delta W + G(p)) = 0.$$

Incompressible Brinkman

Darcy's law/PME

$$\partial_t \varrho - \nabla \cdot (\varrho \nabla p) = \varrho G(p),$$

 $p = \varrho^{\gamma}.$

$$\partial_t \varrho - \nabla \cdot (\varrho \nabla p) = \varrho G(p),$$

$$p(1 - \varrho) = 0,$$

$$p(\Delta p + G(p)) = 0.$$

Incompressible Darcy/Hele-Shaw

(Short) literature review

Incompressible limit

• $\nu=0,\,\gamma\to\infty$: From PME to HS: Perthame, Vázquez, Quirós (2014) Aronson - Bénilan estimate, BV regularity

(Short) literature review

Incompressible limit

- $\nu=0,\,\gamma\to\infty$: From PME to HS: Perthame, Vázquez, Quirós (2014) Aronson - Bénilan estimate, BV regularity
- $\nu>0,\,\gamma\to\infty$: From compressible to incompressible Brinkman: Dębiec, Perthame, Schmidtchen, Vauchelet ('15, '20-'21) Compactness of ∇W_γ , $W_\nu=K_\nu\star p_\nu$, $-\nu\Delta K_\nu+K_\nu=\delta_0$, strong compactness of p_γ through Young's measures interpretation

(Short) literature review

Incompressible limit

- $\nu = 0, \gamma \to \infty$: From PME to HS: Perthame, Vázquez, Quirós (2014) Aronson - Bénilan estimate, BV regularity
- $\nu > 0, \gamma \to \infty$: From compressible to incompressible Brinkman: Debiec, Perthame, Schmidtchen, Vauchelet ('15, '20-'21) Compactness of ∇W_{γ} , $W_{\nu} = K_{\nu} \star p_{\nu}$, $-\nu \Delta K_{\nu} + K_{\nu} = \delta_0$, strong compactness of p_{γ} through Young's measures interpretation

Inviscid limit

• $\nu \to 0, \gamma > 1$: From compressible Brinkman to PME: D., Debiec, Mandal, Schmidtchen ('23) [$\gamma = 1$], Elbar, Skrzeczkowski ('23) [$\gamma > 1$] Entropy/Energy (in)equalities, strong compactness of W_{ν} , p_{ν} through pressure's equation:

$$\partial_t p = \gamma p(\Delta W + G(p)) + \nabla p \cdot \nabla W$$

Open questions

Joint limit? Inviscid for $\gamma = \infty$?

Outline

Assumptions: approximating sequence $f_{\nu},\ p_{\nu}\in\partial f_{\nu}(\varrho_{\nu})$

The family of energy dissipation inequalities

A priori estimates: weak compactness of $(\varrho_{
u}p_{
u})_{
u>0}$

Strong compactness of $(\nabla W_{\nu})_{\nu>0}$

Family of energy functions:

- For all $\nu > 0$, $f_{\nu} : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is a lower semi-continuous, convex function, and $f_{\nu}(0) = 0$,
- f_{ν} converges pointwise to f_0 .

Family of energy functions:

- For all $\nu > 0$, $f_{\nu} : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is a lower semi-continuous, convex function, and $f_{\nu}(0) = 0$,
- f_{ν} converges pointwise to f_0 .

Example

$$f_{\nu}(\varrho) = \frac{\nu}{\nu + 1} \varrho^{\frac{1}{\nu} + 1}, \quad f'_{\nu}(\varrho) = \varrho^{\frac{1}{\nu}}.$$

As $\nu \to 0$ it converges to the **incompressible energy**

$$f_0(\varrho) = \begin{cases} 0, & \text{for } \varrho < 1 \\ +\infty, & \text{for } \varrho \ge 1. \end{cases}$$

Family of energy functions:

- For all $\nu > 0$, $f_{\nu} : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is a lower semi-continuous, convex function, and $f_{\nu}(0) = 0$,
- f_{ν} converges pointwise to f_0 .

Example

$$f_{\nu}(\varrho) = \frac{\nu}{\nu + 1} \varrho^{\frac{1}{\nu} + 1}, \quad f'_{\nu}(\varrho) = \varrho^{\frac{1}{\nu}}.$$

As $\nu \to 0$ it converges to the **incompressible energy**

$$f_0(\varrho) = \begin{cases} 0, & \text{for } \varrho < 1 \\ +\infty, & \text{for } \varrho \ge 1. \end{cases}$$

Remark: we can take $f_{\nu} = f_0$.

Family of energy functions:

- For all $\nu > 0$, $f_{\nu} : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is a lower semi-continuous, convex function, and $f_{\nu}(0) = 0$,
- f_{ν} converges pointwise to f_0 .

Example

$$f_{\nu}(\varrho) = \frac{\nu}{\nu+1} \varrho^{\frac{1}{\nu}+1}, \quad f'_{\nu}(\varrho) = \varrho^{\frac{1}{\nu}}.$$

As $\nu \to 0$ it converges to the **incompressible energy**

$$f_0(\varrho) = \begin{cases} 0, & \text{for } \varrho < 1 \\ +\infty, & \text{for } \varrho \ge 1. \end{cases}$$

Remark: we can take $f_{\nu} = f_0$.

Initial data:
$$\varrho^{\text{in}} \geq 0$$
, $\varrho^{\text{in}} \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$, $|x|^2 \varrho^{\text{in}} \in L^1(\mathbb{R}^d)$.

Goal:

$$\begin{split} \partial_{t}\varrho_{\nu} - \nabla \cdot (\varrho_{\nu}\nabla W_{\nu}) &= \varrho_{\nu}G(p_{\nu}), & \partial_{t}\varrho - \nabla \cdot (\varrho\nabla p) &= \varrho G(p), \\ -\nu\Delta W_{\nu} + W_{\nu} &= p_{\nu} \in \partial f_{\nu}(\varrho_{\nu}), & \nu \to 0 & p \in \partial f_{0}(\varrho) \end{split}$$

Goal:

$$\begin{split} \partial_{t}\varrho_{\nu} - \nabla \cdot (\varrho_{\nu}\nabla W_{\nu}) &= \varrho_{\nu}G(p_{\nu}), & \partial_{t}\varrho - \nabla \cdot (\varrho\nabla p) &= \varrho G(p), \\ -\nu\Delta W_{\nu} + W_{\nu} &= p_{\nu} \in \partial f_{\nu}(\varrho_{\nu}), & \nu \to 0 & p \in \partial f_{0}(\varrho) \end{split}$$

$$p_{\nu}\varrho_{\nu} = f_{\nu}(\varrho_{\nu}) + f_{\nu}^{*}(p_{\nu}), \qquad p\varrho = f_{0}(\varrho) + f_{0}^{*}(p).$$

Recall: $f^*(b) = \sup_a ab - f(a)$.

Goal:

$$\begin{split} \partial_t \varrho_\nu - \nabla \cdot (\varrho_\nu \nabla W_\nu) &= \varrho_\nu G(p_\nu), & \partial_t \varrho - \nabla \cdot (\varrho \nabla p) &= \varrho G(p), \\ -\nu \Delta W_\nu + W_\nu &= p_\nu \in \partial f_\nu(\varrho_\nu), & \nu \to 0 & p \in \partial f_0(\varrho) \end{split}$$

$$p_{\nu}\varrho_{\nu} = f_{\nu}(\varrho_{\nu}) + f_{\nu}^{*}(p_{\nu}), \qquad p\varrho = f_{0}(\varrho) + f_{0}^{*}(p).$$

Recall: $f^*(b) = \sup_a ab - f(a)$.

$$f_0^*(b) = \begin{cases} b, & \text{for } b > 0, \\ 0, & \text{for } b \le 0, \end{cases} \qquad f_0^{*\prime}(b) = \begin{cases} 1, & \text{for } b > 0, \\ 0, & \text{for } b \le 0. \end{cases}$$

Goal:

$$\begin{split} \partial_t \varrho_\nu - \nabla \cdot (\varrho_\nu \nabla W_\nu) &= \varrho_\nu G(p_\nu), & \partial_t \varrho - \nabla \cdot (\varrho \nabla p) &= \varrho G(p), \\ -\nu \Delta W_\nu + W_\nu &= p_\nu \in \partial f_\nu(\varrho_\nu), & \nu \to 0 & p \in \partial f_0(\varrho) \end{split}$$

$$p_{\nu}\varrho_{\nu} = f_{\nu}(\varrho_{\nu}) + f_{\nu}^{*}(p_{\nu}), \qquad p\varrho = f_{0}(\varrho) + f_{0}^{*}(p).$$

Recall: $f^*(b) = \sup_a ab - f(a)$.

$$f_0^*(b) = \begin{cases} b, & \text{for } b > 0, \\ 0, & \text{for } b \le 0, \end{cases} \qquad f_0^{*\prime}(b) = \begin{cases} 1, & \text{for } b > 0, \\ 0, & \text{for } b \le 0. \end{cases}$$

A priori estimates: $\varrho_{\nu}, p_{\nu} \in L^{\infty}(0, T; L^{1}(\mathbb{R}^{d}) \cap L^{\infty}(\mathbb{R}^{d}))$ uniformly $\nu > 0$, thus $\varrho_{\nu} \rightharpoonup \varrho, \quad p_{\nu} \rightharpoonup \rho.$

Moreover

$$W_{\nu} = K_{\nu} \star p_{\nu} \rightharpoonup p.$$

Theorem: Energy dissipation inequality.

Let $z: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a convex function, and $h_{\nu}: \mathbb{R} \to \mathbb{R}$ such that

$$h_{\nu}'(b) = \int_{b_0}^b \frac{z''(s)}{f_{\nu}^{*'}(s)} ds$$
, for some $b_0 \in \mathbb{R}$.

Then

$$\int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} z''(W_{\nu}) |\nabla W_{\nu}|^{2} \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} h'_{\nu}(p_{\nu}) \varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(0)$$

Theorem: Energy dissipation inequality.

Let $z: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a convex function, and $h_{\nu}: \mathbb{R} \to \mathbb{R}$ such that

$$h_{\nu}'(b) = \int_{b_0}^b \frac{z''(s)}{f_{\nu}^{*'}(s)} ds$$
, for some $b_0 \in \mathbb{R}$.

Ther

$$\int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} z''(W_{\nu}) |\nabla W_{\nu}|^{2} \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} h'_{\nu}(p_{\nu}) \varrho_{\nu} G(p_{\nu})$$

$$+ \int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(0)$$

Remark:

- $\varrho_{\nu}h'_{\nu}(p_{\nu})-z'(p_{\nu})\geq -z'(b_0)$ therefore we can guarantee its **positivity**,
- still need to say something about $\iint h'_{\nu}(p_{\nu})\varrho_{\nu}G(p_{\nu})$.

Theorem: Energy dissipation inequality.

Let $z: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a convex function, and $h_{\nu}: \mathbb{R} \to \mathbb{R}$ such that

$$h_{\nu}'(b) = \int_{b_0}^b \frac{z''(s)}{f_{\nu}^{*'}(s)} ds$$
, for some $b_0 \in \mathbb{R}$.

Ther

$$\int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} z''(W_{\nu}) |\nabla W_{\nu}|^{2} \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} h'_{\nu}(p_{\nu}) \varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(0)$$

Remark:

- $\varrho_{\nu}h'_{\nu}(p_{\nu}) z'(p_{\nu}) \ge -z'(b_0)$ therefore we can guarantee its **positivity**,
- still need to say something about $\iint h'_{\nu}(p_{\nu})\varrho_{\nu}G(p_{\nu})$.

Idea of the proof: test the equation against $h'_{\nu}(p_{\nu})$, notice: $h''_{\nu}(p_{\nu})\varrho_{\nu}=z''(p_{\nu})$

Theorem: Energy dissipation inequality.

Let $z: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a convex function, and $h_{\nu}: \mathbb{R} \to \mathbb{R}$ such that

$$h_{\nu}'(b)=\int_{b_0}^b rac{z''(s)}{f_{\nu}^{*'}(s)}ds, ext{ for some } b_0\in\mathbb{R}.$$

Ther

$$\int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} z''(W_{\nu}) |\nabla W_{\nu}|^{2} \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} h'_{\nu}(p_{\nu}) \varrho_{\nu} G(p_{\nu})$$

$$+ \int_{\mathbb{R}^{d}} (\varrho_{\nu} h'_{\nu}(p_{\nu}) - z'(p_{\nu}))(0)$$

Remark:

- $\varrho_{\nu}h'_{\nu}(p_{\nu}) z'(p_{\nu}) \ge -z'(b_0)$ therefore we can guarantee its **positivity**,
- still need to say something about $\iint h'_{\nu}(p_{\nu})\varrho_{\nu}G(p_{\nu})$.

Idea of the proof: test the equation against $h'_{\nu}(p_{\nu})$, notice: $h''_{\nu}(p_{\nu})\varrho_{\nu}=z''(p_{\nu})$ but use the regularised equation: $\partial_{t}\varrho-\varepsilon\Delta\varrho-\nabla\cdot(\varrho\nabla W)=\varrho G(p)$.

Important:
$$h''(p_{\nu})\varrho_{\nu}=z''(p_{\nu})$$
, (since $f_{\nu}^{*'}(p_{\nu})=\varrho_{\nu}$).

Important: $h''(p_{\nu})\varrho_{\nu}=z''(p_{\nu})$, (since $f_{\nu}^{*'}(p_{\nu})=\varrho_{\nu}$).

Time derivative $\partial_t \varrho_{\nu}$:

$$h_{\nu}'(p_{\nu})\partial_{t}\varrho_{\nu}=\partial_{t}(\varrho_{\nu}h_{\nu}'(p_{\nu})-z'(p_{\nu})).$$

Important: $h''(p_{\nu})\varrho_{\nu} = z''(p_{\nu})$, (since $f_{\nu}^{*'}(p_{\nu}) = \varrho_{\nu}$).

Time derivative $\partial_t \varrho_{\nu}$:

$$h_{\nu}'(p_{\nu})\partial_{t}\varrho_{\nu}=\partial_{t}(\varrho_{\nu}h_{\nu}'(p_{\nu})-z'(p_{\nu})).$$

Divergence $-\nabla \cdot (\varrho_{\nu} \nabla W_{\nu})$:

$$\iint h''(p_{\nu}) \nabla p_{\nu} \cdot \varrho_{\nu} \nabla W_{\nu} = \iint z''(p_{\nu}) \nabla p_{\nu} \cdot \nabla W_{\nu}$$

$$= -\iint z'(p_{\nu}) \Delta W_{\nu}$$

$$= \iint z'(p_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu}$$

$$\ge \iint z'(W_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu}$$

$$= -\iint z'(W_{\nu}) \Delta W_{\nu}$$

$$= \iint z''(W_{\nu}) |\nabla W_{\nu}|^{2}.$$

ą

Important: $h''(p_{\nu})\varrho_{\nu} = z''(p_{\nu})$, (since $f_{\nu}^{*'}(p_{\nu}) = \varrho_{\nu}$).

Time derivative $\partial_t \varrho_{\nu}$:

$$h_{\nu}'(p_{\nu})\partial_{t}\varrho_{\nu}=\partial_{t}(\varrho_{\nu}h_{\nu}'(p_{\nu})-z'(p_{\nu})).$$

Divergence $-\nabla \cdot (\varrho_{\nu} \nabla W_{\nu})$:

$$\begin{split} \iint h''(p_{\nu}) \nabla p_{\nu} \cdot \varrho_{\nu} \nabla W_{\nu} &= \iint z''(p_{\nu}) \nabla p_{\nu} \cdot \nabla W_{\nu} \\ &= -\iint z'(p_{\nu}) \frac{\Delta W_{\nu}}{\nu} \\ &= \iint z'(p_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu} \\ &\geq \iint z'(W_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu} \\ &= -\iint z''(W_{\nu}) \Delta W_{\nu} \\ &= \iint z''(W_{\nu}) |\nabla W_{\nu}|^{2}. \end{split}$$

ą

Important: $h''(p_{\nu})\varrho_{\nu} = z''(p_{\nu})$, (since $f_{\nu}^{*'}(p_{\nu}) = \varrho_{\nu}$).

Time derivative $\partial_t \varrho_{\nu}$:

$$h_{\nu}'(p_{\nu})\partial_{t}\varrho_{\nu}=\partial_{t}(\varrho_{\nu}h_{\nu}'(p_{\nu})-z'(p_{\nu})).$$

Divergence $-\nabla \cdot (\varrho_{\nu} \nabla W_{\nu})$:

$$\iint h''(p_{\nu}) \nabla p_{\nu} \cdot \varrho_{\nu} \nabla W_{\nu} = \iint z''(p_{\nu}) \nabla p_{\nu} \cdot \nabla W_{\nu}$$

$$= -\iint z'(p_{\nu}) \Delta W_{\nu}$$

$$= \iint z'(p_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu}$$

$$\ge \iint z'(W_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu}$$

$$= -\iint z'(W_{\nu}) \Delta W_{\nu}$$

$$= \iint z''(W_{\nu}) |\nabla W_{\nu}|^{2}.$$

ą

Important: $h''(p_{\nu})\varrho_{\nu} = z''(p_{\nu})$, (since $f_{\nu}^{*'}(p_{\nu}) = \varrho_{\nu}$).

Time derivative $\partial_t \varrho_{\nu}$:

$$h'_{\nu}(p_{\nu})\partial_{t}\varrho_{\nu} = \partial_{t}(\varrho_{\nu}h'_{\nu}(p_{\nu}) - z'(p_{\nu})).$$

Divergence $-\nabla \cdot (\varrho_{\nu} \nabla W_{\nu})$:

$$\begin{split} \iint h''(p_{\nu}) \nabla p_{\nu} \cdot \varrho_{\nu} \nabla W_{\nu} &= \iint z''(p_{\nu}) \nabla p_{\nu} \cdot \nabla W_{\nu} \\ &= -\iint z'(p_{\nu}) \Delta W_{\nu} \\ &= \iint z'(p_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu} \\ &\geq \iint z'(W_{\nu}) \frac{p_{\nu} - W_{\nu}}{\nu} \\ &= -\iint z'(W_{\nu}) \Delta W_{\nu} \\ &= \iint z''(W_{\nu}) |\nabla W_{\nu}|^{2}. \end{split}$$

Internal energy dissipation

Choose: $z''=f_{
u}^{*\prime}$, then $h_{
u}'(p_{
u})=p_{
u}=f_{
u}'(arrho_{
u})$ and obtain

$$\int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(T) + \int_0^T \int_{\mathbb{R}^d} f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2 \leq \int_0^T \int_{\mathbb{R}^d} p_{\nu}\varrho_{\nu}G(p_{\nu}) + \int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(0),$$

Internal energy dissipation

Choose: $z''=f_
u^{*\prime}$, then $h_
u'(p_
u)=p_
u=f_
u'(arrho_
u)$ and obtain

$$\int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(T) + \int_0^T \!\! \int_{\mathbb{R}^d} f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2 \leq \int_0^T \!\! \int_{\mathbb{R}^d} p_{\nu}\varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(0),$$

This is the equivalent of the energy equality for Darcy's law

$$\int_{\mathbb{R}^d} f(\varrho)(T) + \int_0^T \int_{\mathbb{R}^d} \varrho |\nabla \varrho|^2 = \int_0^T \int_{\mathbb{R}^d} \varrho \varphi G(\varrho) + \int_{\mathbb{R}^d} f(\varrho)(0).$$

Internal energy dissipation

Choose: $z^{\prime\prime}=f_{
u}^{*\prime}$, then $h_{
u}^{\prime}(p_{
u})=p_{
u}=f_{
u}^{\prime}(arrho_{
u})$ and obtain

$$\int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(T) + \int_0^T \int_{\mathbb{R}^d} f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2 \leq \int_0^T \int_{\mathbb{R}^d} p_{\nu}\varrho_{\nu}G(p_{\nu}) + \int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(0),$$

This is the equivalent of the energy equality for Darcy's law

$$\int_{\mathbb{R}^d} f(\varrho)(T) + \int_0^T \!\! \int_{\mathbb{R}^d} \varrho |\nabla p|^2 = \int_0^T \!\! \int_{\mathbb{R}^d} p \varrho G(p) + \int_{\mathbb{R}^d} f(\varrho)(0).$$

The PME is a W_2 -gradient flow with respect to the internal energy

$$F(\varrho) = \int_{\mathbb{R}^d} f(\varrho) dx,$$

namely

$$\partial_t \varrho = -\nabla_{W_2} F(\varrho) = \nabla \cdot \left(\varrho \nabla \frac{\delta F(\varrho)}{\delta \varrho} \right).$$

Indeed $\frac{\delta F(\varrho)}{\delta \rho} = f'(\varrho) = p$, hence

$$\partial_t \varrho - \nabla \cdot (\varrho \nabla p) = 0.$$

Entropy dissipation

Choose: $z''=f_
u''$, then $h_
u'(p_
u)=\ln(f_
u''(p_
u))=\ln arrho_
u$ and obtain

$$\mathcal{H}(\varrho_{\nu})(T) + \int_0^T\!\!\int_{\mathbb{R}^d} f_{\nu}^{*\prime\prime}(W_{\nu}) |\nabla W_{\nu}|^2 \leq \int_0^T\!\!\int_{\mathbb{R}^d} \ln \varrho_{\nu} \varrho_{\nu} G(p_{\nu}) + \mathcal{H}(\varrho_{\nu})(0)$$

where

$$\mathcal{H}(\varrho) = \int_{\mathbb{R}^d} \varrho \ln \varrho - \varrho.$$

Entropy dissipation

Choose: $z''=f_{
u}^{*\prime\prime}$, then $h_{
u}'(p_{
u})=\ln(f_{
u}^{*\prime}(p_{
u}))=\lnarrho_{
u}$ and obtain

$$\mathcal{H}(\varrho_{\nu})(T) + \int_0^T\!\!\int_{\mathbb{R}^d} f_{\nu}^{*\prime\prime}(W_{\nu}) |\nabla W_{\nu}|^2 \leq \int_0^T\!\!\int_{\mathbb{R}^d} \ln \varrho_{\nu} \varrho_{\nu} G(p_{\nu}) + \mathcal{H}(\varrho_{\nu})(0)$$

where

$$\mathcal{H}(\varrho) = \int_{\mathbb{R}^d} \varrho \ln \varrho - \varrho.$$

Remark. $\varrho_{\nu} \ln \varrho_{\nu} \in L^{1}(0,T;L^{1}(\mathbb{R}^{d}))$ uniformly in $\nu \geq 0$ because the second moment control propagates in time

$$\sup_{\nu>0}\sup_{t\in[0,T]}\int_{\mathbb{R}^d}|x|^2\varrho_{\nu}<+\infty.$$

Energy dissipation inequality

Choose: z''=1 , then $h_{
u}'(p_{
u})=\int rac{1}{f_{
u}^{**}(s)}ds$ and obtain

$$\begin{split} \int_{\mathbb{R}^{d}} (\varrho_{\nu} h_{\nu}'(p_{\nu}) - z'(p_{\nu}))(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} \nu |\Delta W_{\nu}|^{2} + \int_{0}^{T} \int_{\mathbb{R}^{d}} |\nabla W_{\nu}|^{2} \\ & \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} h_{\nu}'(p_{\nu}) \varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^{d}} (\varrho_{\nu} h_{\nu}'(p_{\nu}) - z'(p_{\nu}))(0), \end{split}$$

Energy dissipation inequality

Choose: z''=1 , then $h'_
u(p_
u)=\int rac{1}{f^{**}_
u'(s)}ds$ and obtain

$$\begin{split} \int_{\mathbb{R}^{d}} (\varrho_{\nu} h_{\nu}'(p_{\nu}) - z'(p_{\nu}))(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} \nu |\Delta W_{\nu}|^{2} + \int_{0}^{T} \int_{\mathbb{R}^{d}} |\nabla W_{\nu}|^{2} \\ & \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} h_{\nu}'(p_{\nu}) \varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^{d}} (\varrho_{\nu} h_{\nu}'(p_{\nu}) - z'(p_{\nu}))(0), \end{split}$$

because

$$\begin{split} \iint h_{\nu}'(p_{\nu}) \nabla p_{\nu} \cdot \varrho_{\nu} \nabla W_{\nu} &= -\iint z'(p_{\nu}) \Delta W_{\nu} \\ &= -\iint p_{\nu} \Delta W_{\nu} \\ &= -\iint (-\nu \Delta W_{\nu} + W_{\nu}) \Delta W_{\nu} \\ &= -\iint \nu |\Delta W_{\nu}|^{2} + |\nabla W_{\nu}|^{2}. \end{split}$$

Compactness of the product

Lemma

The following holds uniformly in $\nu>0$

- $\cdot \sqrt{\nu}\Delta W_{\nu} \in L^{2}(0,T;L^{2}(\mathbb{R}^{d})),$
- $W_{\nu} \in L^2(0,T;H^1(\mathbb{R}^d)),$
- $\cdot \partial_t \varrho_{\nu} \in L^2(0,T;H^{-1}(\mathbb{R}^d)).$

Moreover

$$\varrho_{\nu}p_{\nu} \rightharpoonup \varrho p$$
 weakly in $L^{2}(0,T;L^{2}(\mathbb{R}^{d}))$.

Compactness of the product

Lemma

The following holds uniformly in $\nu>0$

- $\cdot \sqrt{\nu}\Delta W_{\nu} \in L^{2}(0,T;L^{2}(\mathbb{R}^{d})),$
- $W_{\nu} \in L^2(0,T;H^1(\mathbb{R}^d)),$
- $\cdot \partial_t \varrho_{\nu} \in L^2(0,T;H^{-1}(\mathbb{R}^d)).$

Moreover

$$\varrho_{\nu}p_{\nu} \rightharpoonup \varrho p$$
 weakly in $L^{2}(0,T;L^{2}(\mathbb{R}^{d}))$.

Proof. By Brinkman's law

$$p_{\nu} - W_{\nu} = -\nu \Delta W_{\nu} \to 0.$$

Hence

$$\iint p_{\nu}\varrho_{\nu}\varphi = \iint (W_{\nu}\varrho_{\nu} - \nu\Delta W_{\nu}\varrho_{\nu})\varphi \to \iint p\varrho\varphi,$$

and since ϱ_{ν} , p_{ν} are uniformly bounded in any L^{p} , we conclude.

Convergence of $f_{\nu}^{*}(W_{\nu})$

Lemma

Up to a subsequence

$$f_{\nu}(\varrho_{\nu}) \rightharpoonup f_{0}(\varrho), \quad f_{\nu}^{*}(p_{\nu}) \rightharpoonup f_{0}^{*}(p), \quad f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}^{*}(p).$$

Convergence of $f_{\nu}^{*}(W_{\nu})$

Lemma

Up to a subsequence

$$f_{\nu}(\varrho_{\nu}) \rightharpoonup f_0(\varrho), \quad f_{\nu}^*(p_{\nu}) \rightharpoonup f_0^*(p), \quad f_{\nu}^*(W_{\nu}) \rightharpoonup f_0^*(p).$$

Proof. We know

$$f_{\nu}(\varrho_{\nu}) + f_{\nu}^{*}(p_{\nu}) = \varrho_{\nu}p_{\nu} \rightharpoonup \varrho p \leq f_{0}(\varrho) + f_{0}^{*}(p).$$

Convergence of $f_{ u}^*(W_{ u})$

Lemma

Up to a subsequence

$$f_{\nu}(\varrho_{\nu}) \rightharpoonup f_0(\varrho), \quad f_{\nu}^*(p_{\nu}) \rightharpoonup f_0^*(p), \quad f_{\nu}^*(W_{\nu}) \rightharpoonup f_0^*(p).$$

Proof. We know

$$f_{\nu}(\varrho_{\nu}) + f_{\nu}^{*}(p_{\nu}) = \varrho_{\nu}p_{\nu} \rightharpoonup \varrho p \leq f_{0}(\varrho) + f_{0}^{*}(p).$$

Since

$$f_0(\varrho) \leq \liminf f_{\nu}(\varrho_{\nu}), \qquad f_0^*(p) \leq \liminf f_{\nu}^*(p_{\nu}),$$

then

$$f_{\nu}(\varrho_{\nu}) \rightharpoonup f_0(\varrho), \qquad f_{\nu}^*(p_{\nu}) \rightharpoonup f_0^*(p).$$

Convergence of $f_{ u}^*(W_{ u})$

Lemma

Up to a subsequence

$$f_{\nu}(\varrho_{\nu}) \rightharpoonup f_{0}(\varrho), \quad f_{\nu}^{*}(p_{\nu}) \rightharpoonup f_{0}^{*}(p), \quad f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}^{*}(p).$$

Proof. We know

$$f_{\nu}(\varrho_{\nu}) + f_{\nu}^{*}(p_{\nu}) = \varrho_{\nu}p_{\nu} \rightharpoonup \varrho p \leq f_{0}(\varrho) + f_{0}^{*}(p).$$

Since

$$f_0(\varrho) \leq \liminf f_{\nu}(\varrho_{\nu}), \qquad f_0^*(p) \leq \liminf f_{\nu}^*(p_{\nu}),$$

then

$$f_{\nu}(\varrho_{\nu}) \rightharpoonup f_0(\varrho), \qquad f_{\nu}^*(p_{\nu}) \rightharpoonup f_0^*(p).$$

Finally, we compute

$$|f_{\nu}^{*}(p_{\nu}) - f_{\nu}^{*}(W_{\nu})| \leq f_{\nu}^{*\prime}(\max(p_{\nu}, W_{\nu}))|p_{\nu} - W_{\nu}|$$

$$\leq ||\varrho_{\nu}||_{\infty}|p_{\nu} - W_{\nu}| \to 0.$$

We know: $\varrho_{\nu} \rightharpoonup \varrho, \; p_{\nu} \rightharpoonup p \; \text{ in } L^{2}L^{2}, \; W_{\nu} \rightharpoonup p \; \text{ in } L^{2}H^{1},$ and $\varrho_{\nu} \nabla W_{\nu} \rightharpoonup m, \; \varrho_{\nu} G(p_{\nu}) \rightharpoonup R \; \text{ in } L^{2}L^{2}.$

We know:
$$\varrho_{\nu} \rightharpoonup \varrho, \ p_{\nu} \rightharpoonup p \ \text{ in } L^{2}L^{2}, \ W_{\nu} \rightharpoonup p \ \text{ in } L^{2}H^{1},$$
 and $\rho_{\nu}\nabla W_{\nu} \rightharpoonup m, \ \rho_{\nu}G(p_{\nu}) \rightharpoonup R \ \text{ in } L^{2}L^{2}.$

Then, we have

$$\partial_t \varrho - \nabla \cdot m = R.$$

We need to prove:

$$m = \varrho \nabla p$$
,

(strong compactness of ∇W_{ν} and p_{ν} will follow).

We know:
$$\varrho_{\nu} \rightharpoonup \varrho, \; p_{\nu} \rightharpoonup p \; \text{ in } L^{2}L^{2}, \; W_{\nu} \rightharpoonup p \; \text{ in } L^{2}H^{1},$$
 and
$$\varrho_{\nu} \nabla W_{\nu} \rightharpoonup m, \; \varrho_{\nu} G(p_{\nu}) \rightharpoonup R \; \text{ in } L^{2}L^{2}.$$

Then, we have

$$\partial_t \varrho - \nabla \cdot m = R.$$

We need to prove:

$$m = \varrho \nabla p$$
,

(strong compactness of ∇W_{ν} and p_{ν} will follow).

We do this by showing

$$\iint \frac{|m|^2}{2\varrho} + \frac{\varrho |\nabla p|^2}{2} \le \iint m \cdot \nabla p.$$

We know:
$$\varrho_{\nu} \rightharpoonup \varrho, \ p_{\nu} \rightharpoonup p \ \text{ in } L^{2}L^{2}, \ W_{\nu} \rightharpoonup p \ \text{ in } L^{2}H^{1},$$
 and
$$\varrho_{\nu} \nabla W_{\nu} \rightharpoonup m, \ \varrho_{\nu} G(p_{\nu}) \rightharpoonup R \ \text{ in } L^{2}L^{2}.$$

Then, we have

$$\partial_t \varrho - \nabla \cdot m = R.$$

We need to prove:

$$m = \varrho \nabla p$$
,

(strong compactness of ∇W_{ν} and p_{ν} will follow).

We do this by showing

$$\iint \frac{|m|^2}{2\varrho} + \frac{\varrho |\nabla p|^2}{2} \le \iint m \cdot \nabla p.$$

Idea: EDI formulation of gradient flows (Sandier-Serfaty).

Problem: The Brinkman equation is not a gradient flow!

We show that

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^2$$

(2)
$$\iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2$$

(3)
$$\iint m \cdot \nabla p \ge \limsup_{\nu \to 0} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2$$

We show that

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^2$$

(2)
$$\iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2$$

(3)
$$\iint m \cdot \nabla p \ge \limsup_{\nu \to 0} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^2$$

To prove (3) we compare

$$\int_{\mathbb{R}^{d}} f_{\nu}(\varrho_{\nu})(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \leq \int_{0}^{T} \int_{\mathbb{R}^{d}} p_{\nu} \varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^{d}} f_{\nu}(\varrho_{\nu})(0)$$

$$\int_{\mathbb{R}^d} f_0(\varrho)(T) + \int_0^1 \int_{\mathbb{R}^d} m \cdot \nabla p = \int_0^1 \int_{\mathbb{R}^d} pR + \int_{\mathbb{R}^d} f_0(\varrho)(0)$$

We show that

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2$$

(2)
$$\iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2$$

(3)
$$\iint m \cdot \nabla p \ge \limsup_{\nu \to 0} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2}$$

To prove (3) we compare

$$\int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(T) + \int_0^T \int_{\mathbb{R}^d} f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^2 \le \int_0^T \int_{\mathbb{R}^d} p_{\nu} \varrho_{\nu} G(p_{\nu}) + \int_{\mathbb{R}^d} f_{\nu}(\varrho_{\nu})(0)$$

and

$$\int_{\mathbb{R}^d} f_0(\varrho)(T) + \int_0^T \int_{\mathbb{R}^d} m \cdot \nabla \rho = \int_0^T \int_{\mathbb{R}^d} pR + \int_{\mathbb{R}^d} f_0(\varrho)(0)$$

In [D., Dębiec, Mandal, Schmidtchen, SIMA 24], we had $p_{\nu} = f'(\varrho_{\nu}) = \varrho_{\nu}$ and the **entropy** dissipation gives $\iint |\nabla W_{\nu}|^2$.

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*'}(W_{\nu})$ is from ϱ_{ν} .

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}(p)$, but what about $f_{\nu}^{*\prime}(W_{\nu})$? $f_{\nu}^{*\prime}$ can be **discontinuous!**

Hence, despite $p_{\nu}-W_{\nu}\to 0$, $\varrho_{\nu}=f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}(p)$, but what about $f_{\nu}^{*\prime}(W_{\nu})$? $f_{\nu}^{*\prime}$ can be **discontinuous!** Hence, despite $p_{\nu} - W_{\nu} \to 0$, $\varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

If we had $arrho_
u$

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}(p)$, but what about $f_{\nu}^{*\prime}(W_{\nu})$? $f_{\nu}^{*\prime}$ can be **discontinuous!**

Hence, despite $p_{\nu}-W_{\nu}\to 0$, $\varrho_{\nu}=f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

If we had ϱ_{ν} (take ζ smooth vector field)

$$\frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^{2} \ge \iint \varrho_{\nu} \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2}$$

$$\to \iint m \cdot \zeta - \frac{1}{2} \varrho |\zeta|^{2}.$$

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}(p)$, but what about $f_{\nu}^{*\prime}(W_{\nu})$? $f_{\nu}^{*\prime}$ can be **discontinuous!**

Hence, despite $p_{\nu}-W_{\nu}\to 0$, $\varrho_{\nu}=f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

If we had ϱ_{ν} (take ζ smooth vector field)

$$\frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^{2} \ge \iint \varrho_{\nu} \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2}$$

$$\to \iint m \cdot \zeta - \frac{1}{2} \varrho |\zeta|^{2}.$$

Need to show

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\nabla W_{\nu}|^2 \leq 0.$$

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup f_{0}(p)$, but what about $f_{\nu}^{*\prime}(W_{\nu})$? $f_{\nu}^{*\prime}$ can be **discontinuous!**

Hence, despite $p_{\nu}-W_{\nu}\to 0$, $\varrho_{\nu}=f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

If we had ϱ_{ν} (take ζ smooth vector field)

$$\frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^{2} \ge \iint \varrho_{\nu} \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2}$$

$$\to \iint m \cdot \zeta - \frac{1}{2} \varrho |\zeta|^{2}.$$

Need to show

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\nabla W_{\nu}|^2 \leq 0.$$

Remark. For $f_{\nu}=f_0$ it is trivial: $W_{\nu}>0$ and $f_{\nu}^*(b)=(b)_+$, while $\varrho_{\nu}\leq 1$.

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

Issues: $f_{\nu}^*(W_{\nu}) \rightharpoonup f_0(p)$, but what about $f_{\nu}^{*'}(W_{\nu})$? $f_{\nu}^{*'}$ can be **discontinuous!**

Hence, despite $p_{\nu}-W_{\nu}\to 0$, $\varrho_{\nu}=f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

If we had $\varrho_{
u}$ (take ζ smooth vector field)

$$\frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^{2} \ge \iint \varrho_{\nu} \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2}$$

$$\to \iint m \cdot \zeta - \frac{1}{2} \varrho |\zeta|^{2}.$$

Need to show

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\nabla W_{\nu}|^2 \leq 0.$$

Idea: estimate ϱ_{ν} from above $\varrho_{\nu} \leq \frac{f_{\nu}^{*}(p_{\nu} + \delta) - f_{\nu}^{*}(p_{\nu})}{\delta}$.

$$(2)\quad \iint \frac{\varrho |\nabla \rho|^2}{2} \leq \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\begin{split} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} &\geq \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2} \\ &= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2} \end{split}$$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\begin{split} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} &\geq \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2} \\ &= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2} \end{split}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*'}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*'}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}
= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \underline{\varrho_{\nu}} |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^{2}$$

$$\rightarrow - \iint f_{0}^{*}(\rho) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*'}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^{2}$$

$$\rightarrow \iint f_{0}^{*\prime}(p) \nabla p \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^{2} + (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^{2}$$

$$\rightarrow \iint f_{0}^{*\prime}(\rho) \nabla \rho \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

It's again a matter of estimating $\iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu}))|\zeta|^2$, but from below.

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^{2} + (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^{2}$$

$$\rightarrow \iint f_{0}^{*\prime}(\rho) \nabla \rho \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

It's again a matter of estimating $\iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^2$, but from below.

Use the inf-convolution $f_{\nu,\delta}^*(b) := \inf_c f_{\nu}^*(c) + \frac{1}{2\delta} |c-b|^2$ which satisfies

 $\bullet \ f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^{*}(b), \operatorname{SO} f_{\nu,\delta}^{*\prime}(W_{\nu}) \leq f_{\nu}^{*\prime}(W_{\nu}),$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\begin{split} \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2 &\geq \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\zeta|^2 \\ &= - \iint f_{\nu,\delta}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^2 + (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^2 \\ &\rightarrow \iint f_0^{*\prime}(p) \nabla p \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^2 \end{split}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

It's again a matter of estimating $\iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^2$, but from below.

Use the inf-convolution $f_{\nu,\delta}^*(b) := \inf_c f_{\nu}^*(c) + \frac{1}{2\delta} |c-b|^2$ which satisfies

 $\bullet \ f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^{*}(b), \operatorname{so} f_{\nu,\delta}^{*\prime}(W_{\nu}) \leq f_{\nu}^{*\prime}(W_{\nu}),$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\begin{split} \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2 &\geq \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\zeta|^2 \\ &= - \iint f_{\nu,\delta}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^2 + (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^2 \\ &\rightarrow \iint f_0^{*\prime}(p) \nabla p \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^2 \end{split}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

It's again a matter of estimating $\iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^2$, but from below.

Use the inf-convolution $f_{
u,\delta}^*(b):=\inf_{\mathcal{C}}f_{
u}^*(c)+\frac{1}{2\delta}|c-b|^2$ which satisfies

$$\bullet \ f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^{*}(b), \text{so} \ f_{\nu,\delta}^{*\prime}(W_{\nu}) \leq f_{\nu}^{*\prime}(W_{\nu}), \text{ and } \varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu}) \geq f_{\nu,\delta}^{*\prime}(p_{\nu}),$$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\begin{split} \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2 &\geq \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\zeta|^2 \\ &= - \iint f_{\nu,\delta}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^2 + (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^2 \\ &\rightarrow \iint f_0^{*\prime}(p) \nabla p \cdot \zeta - \frac{1}{2} \iint \varrho |\zeta|^2 \end{split}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

It's again a matter of estimating $\iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^2$, but from **below**.

Use the inf-convolution $f_{\nu,\delta}^*(b):=\inf_c f_{\nu}^*(c)+\frac{1}{2\delta}|c-b|^2$ which satisfies

- $\bullet \ f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^*(b), \, \operatorname{so} f_{\nu,\delta}^{*\prime}(W_{\nu}) \leq f_{\nu}^{*\prime}(W_{\nu}), \, \operatorname{and} \, \varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu}) \geq f_{\nu,\delta}^{*\prime}(p_{\nu}),$
- $f_{\nu,\delta}^*$ is $\frac{1}{\delta}$ - $W^{2,\infty}$, and $|p_{\nu} W_{\nu}| \to 0$.

Conclusion

$$\partial_{t}\varrho - \nabla \cdot (\varrho \nabla W) = \varrho G(p),$$

$$-\nu \Delta W + W = p,$$

$$p = \varrho^{\gamma}.$$

$$\partial_{t}\varrho - \nabla \cdot (\varrho \nabla W) = \varrho G(p),$$

$$\gamma \to \infty$$

$$\partial_{t}\varrho - \nabla \cdot (\varrho \nabla W) = \varrho G(p),$$

$$-\nu \Delta W + W = p,$$

$$p(1 - \varrho) = 0,$$

$$p(\Delta W + G(p)) = 0.$$

$$\partial_{t}\varrho - \nabla \cdot (\varrho \nabla P) = \varrho G(p),$$

$$\rho(\Delta P + G(p)) = 0.$$

$$\rho(\Delta P + G(p)) = 0.$$

Thank you for your attention!

Main idea: estimate how "far" $f_{\nu}^{*\prime}$ is from ϱ_{ν} .

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Main idea: estimate how "far" $f_{\nu}^{*\prime}$ is from ϱ_{ν} .

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Let ζ be a smooth, compactly supported, vector field and let $0 \le q(x) \le \frac{|x|^2}{2}$ and $\frac{q(x)}{|x|} < \infty$ as $|x| \to \infty$.

Main idea: estimate how "far" $f_{\nu}^{*\prime}$ is from ϱ_{ν} .

(1)
$$\iint \frac{|m|^2}{2\varrho} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Let ζ be a smooth, compactly supported, vector field and let $0 \le q(x) \le \frac{|x|^2}{2}$ and $\frac{q(x)}{|x|} < \infty$ as $|x| \to \infty$.

If we had ϱ_{ν}

$$\frac{1}{2} \iint \varrho_{\nu} |\nabla W_{\nu}|^{2} \ge \iint \varrho_{\nu} q(\nabla W_{\nu})$$

$$\ge \iint \varrho_{\nu} \zeta \cdot \nabla W_{\nu} - \varrho_{\nu} q^{*}(\zeta)$$

$$\to \iint \zeta \cdot m - \varrho q^{*}(\zeta)$$

$$\ge \iint \varrho q\left(\frac{m}{\varrho}\right),$$

take $q \to |x|^2/2$ and conclude.

Lemma

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) q(\nabla W_{\nu}) \leq 0.$$

Lemma

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) q(\nabla W_{\nu}) \leq 0.$$

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup \varrho$, but what about $f_{\nu}^{*\prime}(\varrho_{\nu})$?? It can be **discontinuous!** Hence, even though $p_{\nu} - W_{\nu} \to 0$ strongly, $\varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

Lemma

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) q(\nabla W_{\nu}) \leq 0.$$

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup \varrho$, but what about $f_{\nu}^{*\prime}(\varrho_{\nu})$?? It can be **discontinuous**! Hence, even though $p_{\nu} - W_{\nu} \to 0$ strongly, $\varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

Remark. For $f_{\nu}=f_0$ it is trivial, since $W_{\nu}>0$ and $f_{\nu}^*(b)=(b)_+$, while $\varrho_{\nu}\leq 1$.

Lemma

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) q(\nabla W_{\nu}) \le 0.$$

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup \varrho$, but what about $f_{\nu}^{*\prime}(\varrho_{\nu})$?? It can be **discontinuous**! Hence, even though $p_{\nu} - W_{\nu} \to 0$ strongly, $\varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

Remark. For $f_{\nu}=f_0$ it is trivial, since $W_{\nu}>0$ and $f_{\nu}^*(b)=(b)_+$, while $\varrho_{\nu}\leq 1$.

Idea of the proof: estimate ϱ_{ν} from above: since $\varrho_{\nu} \in \partial f_{\nu}^{*}(p_{\nu})$

$$\varrho_{\nu} \leq \frac{f_{\nu}^*(p_{\nu} + \delta) - f_{\nu}^*(p_{\nu})}{\delta}.$$

Lemma

$$\limsup_{\nu \to 0} \frac{1}{2} \iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu})) q(\nabla W_{\nu}) \le 0.$$

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup \varrho$, but what about $f_{\nu}^{*\prime}(\varrho_{\nu})$?? It can be **discontinuous**! Hence, even though $p_{\nu} - W_{\nu} \to 0$ strongly, $\varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

Remark. For $f_{\nu}=f_0$ it is trivial, since $W_{\nu}>0$ and $f_{\nu}^*(b)=(b)_+$, while $\varrho_{\nu}\leq 1$.

Idea of the proof: estimate ϱ_{ν} from **above**: since $\varrho_{\nu} \in \partial f_{\nu}^{*}(p_{\nu})$

$$\varrho_{\nu} \leq \frac{f_{\nu}^*(p_{\nu} + \delta) - f_{\nu}^*(p_{\nu})}{\delta}.$$

We want

$$\lim_{\delta \to 0} \limsup_{\nu \to 0} \frac{1}{2} \iiint \left(\frac{f_{\nu}^*(p_{\nu} + \delta) - f_{\nu}^*(p_{\nu})}{\delta} - f_{\nu}^{*\prime}(W_{\nu}) \right) q(\nabla W_{\nu}) \leq 0$$

Lemma

$$\limsup_{\nu\to 0}\frac{1}{2}\iint (\varrho_{\nu}-f_{\nu}^{*\prime}(W_{\nu}))q(\nabla W_{\nu})\leq 0.$$

Issues: $f_{\nu}^{*}(W_{\nu}) \rightharpoonup \varrho$, but what about $f_{\nu}^{*\prime}(\varrho_{\nu})$?? It can be **discontinuous!** Hence, even though $p_{\nu} - W_{\nu} \to 0$ strongly, $\varrho_{\nu} = f_{\nu}^{*\prime}(p_{\nu})$ can be very different from $f_{\nu}^{*\prime}(W_{\nu})$.

Remark. For $f_{\nu}=f_0$ it is trivial, since $W_{\nu}>0$ and $f_{\nu}^*(b)=(b)_+$, while $\varrho_{\nu}\leq 1$.

Idea of the proof: estimate ϱ_{ν} from above: since $\varrho_{\nu} \in \partial f_{\nu}^{*}(p_{\nu})$

$$\varrho_{\nu} \leq \frac{f_{\nu}^*(p_{\nu} + \delta) - f_{\nu}^*(p_{\nu})}{\delta}.$$

We want

$$\lim_{\delta \to 0} \limsup_{\nu \to 0} \frac{1}{2} \iint \left(\frac{f_{\nu}^{*}(p_{\nu} + \delta) - f_{\nu}^{*}(p_{\nu})}{\delta} - \frac{f_{\nu}^{*}(W_{\nu} + \delta) - f_{\nu}^{*}(W_{\nu})}{\delta} \right) q(\nabla W_{\nu}) + \frac{1}{2} \iint \left(\frac{f_{\nu}^{*}(W_{\nu} + \delta) - f_{\nu}^{*}(W_{\nu})}{\delta} - f_{\nu}^{*}(W_{\nu}) \right) q(\nabla W_{\nu}) \le 0$$

For all $\delta>0$

$$\limsup_{\nu \to 0} \frac{1}{2} \iiint \left(\frac{f_{\nu}^*(p_{\nu} + \delta) - f_{\nu}^*(p_{\nu})}{\delta} - \frac{f_{\nu}^*(W_{\nu} + \delta) - f_{\nu}^*(W_{\nu})}{\delta} \right) q(\nabla W_{\nu}) = 0$$

since $p_{\nu} - W_{\nu} \to 0$ strongly in L^2L^2 .

For all $\delta > 0$

$$\limsup_{\nu \to 0} \frac{1}{2} \iint \left(\frac{f_{\nu}^*(\rho_{\nu} + \delta) - f_{\nu}^*(\rho_{\nu})}{\delta} - \frac{f_{\nu}^*(W_{\nu} + \delta) - f_{\nu}^*(W_{\nu})}{\delta} \right) q(\nabla W_{\nu}) = 0$$

since $p_{\nu} - W_{\nu} \to 0$ strongly in L^2L^2 .

Assume $f_{\nu}^{*'}$ concave on $(0,+\infty)$ (e.g. the power law). Then,

$$\frac{1}{2} \iiint \left(\frac{f_{\nu}^*(W_{\nu} + \delta) - f_{\nu}^*(W_{\nu})}{\delta} - f_{\nu}^{*\prime}(W_{\nu}) \right) q(\nabla W_{\nu}) \le \delta \iint f_{\nu}^{*\prime\prime}(W_{\nu}) q(\nabla W_{\nu}) \le C\delta,$$

with C uniform in $\nu > 0$. We used the **entropy dissipation inequality**

$$\mathcal{H}_{\nu}(\varrho_{\nu})(T) + \int_{0}^{T} \int_{\mathbb{R}^{d}} f_{\nu}^{*\prime\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \leq C.$$

$$(2) \quad \iint \frac{\varrho |\nabla \rho|^2}{2} \leq \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*'}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}$$

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \leq \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*'}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}
= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*'}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*'}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}
= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \varrho_{\nu} |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*'}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*'}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*'}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \underline{\varrho_{\nu}} |\zeta|^{2}$$

$$\rightarrow - \iint f_{0}^{*}(\rho) \nabla \cdot \zeta - \frac{1}{2} \iint \underline{\varrho} |\zeta|^{2}$$

$$= \iint f_{0}^{*'}(\rho) \nabla \rho \cdot \zeta - \frac{1}{2} \iint \underline{\varrho} |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*'}(W_{\nu})$ is from ϱ_{ν} .

$$(2) \quad \iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

We use Young's inequality and integration by parts

$$\frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\zeta|^{2}$$

$$= - \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \iint \underline{\varrho_{\nu}} |\zeta|^{2} + (\underline{\varrho_{\nu}} - f_{\nu}^{*\prime}(W_{\nu})) |\zeta|^{2}$$

$$\rightarrow - \iint f_{0}^{*}(p) \nabla \cdot \zeta - \frac{1}{2} \iint \underline{\varrho} |\zeta|^{2}$$

$$= \iint f_{0}^{*\prime}(p) \nabla p \cdot \zeta - \frac{1}{2} \iint \underline{\varrho} |\zeta|^{2}$$

Main idea: again, we need to estimate how "far" $f_{\nu}^{*\prime}(W_{\nu})$ is from ϱ_{ν} .

It's again a matter of estimating $\iint (\varrho_{\nu} - f_{\nu}^{*\prime}(W_{\nu}))|\zeta|^2$, this time from **below**.

Lemma

$$\iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Proof. Take the inf-convolution $f_{\nu,\delta}^*$, in particular $f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^*(b)$.

$$\frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} \ge \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\zeta|^{2}
= \iint -f_{\nu,\delta}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2} + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2}$$

Lemma

$$\iint \frac{\varrho |\nabla p|^2}{2} \le \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Proof. Take the inf-convolution $f_{\nu,\delta}^*$, in particular $f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^*(b)$.

$$\begin{split} \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} &\geq \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\zeta|^{2} \\ &= \iint -f_{\nu,\delta}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2} + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2} \\ &= \iint (f_{\nu}^{*}(W_{\nu}) - f_{\nu,\delta}^{*}(W_{\nu})) \nabla \cdot \zeta + \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2} \\ &+ \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2} \end{split}$$

Lemma

$$\iint \frac{\varrho |\nabla \rho|^2}{2} \leq \liminf_{\nu \to 0} \frac{1}{2} \iint f_{\nu}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^2.$$

Proof. Take the inf-convolution $f_{\nu,\delta}^*$, in particular $f_{\nu,\delta}^{*\prime}(b) \leq \inf \partial f_{\nu}^*(b)$.

$$\begin{split} \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\nabla W_{\nu}|^{2} &\geq \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) \nabla W_{\nu} \cdot \zeta - \frac{1}{2} \iint f_{\nu,\delta}^{*\prime}(W_{\nu}) |\zeta|^{2} \\ &= \iint -f_{\nu,\delta}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2} + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2} \\ &= \iint (f_{\nu}^{*}(W_{\nu}) - f_{\nu,\delta}^{*}(W_{\nu})) \nabla \cdot \zeta + \iint f_{\nu}^{*}(W_{\nu}) \nabla \cdot \zeta - \frac{1}{2} \varrho_{\nu} |\zeta|^{2} \\ &+ \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2} \end{split}$$

Goal:

$$\lim_{\delta \to 0} \lim \inf_{\nu \to 0} \iint (f_{\nu}^{*}(W_{\nu}) - f_{\nu,\delta}^{*}(W_{\nu})) \nabla \cdot \zeta + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2} \ge 0.$$

Goal:

$$\textstyle \lim_{\delta \to 0} \lim\inf_{\nu \to 0} \iint (f_{\nu}^*(W_{\nu}) - f_{\nu,\delta}^*(W_{\nu})) \nabla \cdot \zeta + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^2 \geq 0.$$

Goal:

$$\lim_{\delta \to 0} \liminf_{\nu \to 0} \iint (f_{\nu}^*(W_{\nu}) - f_{\nu,\delta}^*(W_{\nu})) \nabla \cdot \zeta + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^2 \geq 0.$$

The inf-convolution is given by

$$f_{\nu,\delta}^*(b) = \inf_{c \in \mathbb{R}} f_{\nu}^*(c) + \frac{1}{2\delta} |c - b|^2,$$

and

$$f_{\nu,\delta}^{*'}(b) \leq \inf \partial f_{\nu}^{*}(b).$$

Goal:

$$\lim_{\delta \to 0} \lim \inf_{\nu \to 0} \iint (f_{\nu}^{*}(W_{\nu}) - f_{\nu,\delta}^{*}(W_{\nu})) \nabla \cdot \zeta + \iint (\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu})) |\zeta|^{2} \ge 0.$$

The inf-convolution is given by

$$f_{\nu,\delta}^*(b) = \inf_{c \in \mathbb{R}} f_{\nu}^*(c) + \frac{1}{2\delta} |c - b|^2,$$

and

$$f_{\nu,\delta}^{*\prime}(b) \le \inf \partial f_{\nu}^{*}(b).$$

We have

$$|f_{\nu}^{*}(W_{\nu}) - f_{\nu,\delta}^{*}(W_{\nu})| \leq \frac{\delta}{2}|f_{\nu}^{*\prime}(W_{\nu})|^{2} \leq \frac{\delta}{2}||\varrho_{\nu}||_{\infty}^{2},$$

and

$$\varrho_{\nu} - f_{\nu,\delta}^{*\prime}(W_{\nu}) = f_{\nu}^{*\prime}(p_{\nu}) - f_{\nu,\delta}^{*\prime}(W_{\nu}) \ge f_{\nu,\delta}^{*\prime}(p_{\nu}) - f_{\nu,\delta}^{*\prime}(W_{\nu}) \ge -\frac{1}{\delta}|p_{\nu} - W_{\nu}| \to 0.$$