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Abstract

Traffic flow problems on junctions (or intersections) have been the subject of abundant literature
in recent years. The modeling involves scalar conservation laws with discontinuities at the junction
points, or, sometimes equivalently, Hamilton-Jacobi equations with discontinuous Hamiltonians. We
will present the existence and uniqueness results for these equations, then explain how to derive these
continuous models (where traffic is seen as a fluid) from discrete models (describing in detail the
individual behavior of vehicles). We conclude with open issues.
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1 Introduction

The goal of the course is to describe recent researches which intend to derive continuous traffic law
models from the microscopic behavior of vehicles. We will start from a traffic flow on a single line, where
this derivation is by now well understood. We will then increasingly complicate the models to arrive to
problems on junctions, for which many questions remain unanswered. For simplicity, we focus on the
case of a single node: this is without loss of generality because of the finite speed of propagation which
is satisfied by our models.

One of the interests of the topic is that it touches several very active domains in PDEs: conservation
laws (possibly with discontinuous fluxes), Hamilton-Jacobi equation (possibly with discontinuous Hamil-
tonians), determinist and stochastic homogenization of conservation laws and Hamilton-Jacobi equations,
hydrodynamic limits...

Let us warn the reader that traffic flow on networks has been a very active research area for at least
three decades. A general overview of the rich literature on the subject is completely out of the scope of
these short notes: we refer for instance to the survey papers or monographs [11, 14, 33] and the references
therein. The originality of the approach developed in this survey—if any—is to emphasize the derivation
of continuous laws from discrete laws.

2 Traffic flow on the line

2.1 A discrete model: follow-the-leader

The simplest model of traffic flow is the so-called follow-the-leader (FtL) model on the line. In this simple
model, vehicles are on a single line and are not allowed to overtake each other. Another key assumption
of the FtL model is that the behavior of a vehicle depends only on the distance to the vehicle in front of
it.

Let N P N be the number of vehicles and, for i P t1, . . . , Nu, let Xiptq the position of vehicle labelled
i at time t. As the vehicles cannot overtake each other, we can assume without loss of generality that
Xiptq ď Xi`1ptq for any i and t. The motion of the vehicles is defined by the simple ODE

9Xiptq “ V pXi`1ptq ´Xiptqq, t ě 0, i P t1, . . . , N ´ 1u.

Here we assume that V : R` Ñ R` is nondecreasing, Lipschitz continuous and bounded. To avoid
collision, one generally assumes the existence of a threshold emin ą 0 such that V ” 0 on r0, emins. There
is an ambiguity on the velocity of the right-most vehicle: it is in general assumed that

9XN ptq “ maxV.

One easy checks the following:

Proposition 2.1. Let V satisfy the conditions above and pXi
0qi“1,...,N be an initial condition satisfying

Xi
0 ă Xi`1

0 @i P t1, . . . , N ´ 1u.

Then there exists a unique solution to the FtL model. In addition

min
i“1,...,N´1

Xi`1ptq ´Xiptq ě min
i“1,...,N´1

Xi`1
0 ´Xi

0 @t ě 0.

As N is large (which is a natural assumption) it is however difficult to have a clear idea of the collective
behavior of the vehicles. For this reason we discuss next continuous equations describing the density of
the vehicles. Then we will present the relationship between FtL and the continuous models.

2.2 A first continuous models: LWR

The LWR model (from Lighthill and Whitham [39] and Richards [46]) is the following conservation law:

Btρ` Bxpfpρqq “ 0 in p0,8q ˆ R (1)
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Here f : r0, Rs Ñ R is Lipschitz continuous, nonnegative and such that fp0q “ fpRq “ 0 for some
R ą 0 which stands for the maximal density. One often assumes that f is concave (or semi-concave, i.e.,
increasing on r0, as and decreasing on ra,Rs for some a P p0, Rq).

Let us first explain equation (1). We argue here as if data and solutions are smooth. The idea in this
macroscopic model is that each (tiny) vehicle x has a velocity given by a function v of the density. Let
Xpt, xq be the integral flow of this ODE: d

dtXpt, xq “ vpρpt,Xpt, xqqq, with Xp0, xq “ x. Then the density
ρptq is the image by x Ñ Xpt, xq of the initial density ρ0. Thus, for any smooth test function φ with a
compact support in p0,8q ˆ R,

d

dt

ˆ
R
φpt, xqρpt, xqdx “

d

dt

ˆ
R
φpt,Xpt, xqqρ0pxqdx “

ˆ
R
pBtφpt,Xpt, xqq ` Bxφpt,Xpt, xqq

d

dt
Xpt, xqqρ0pxqdx

“

ˆ
R
pBtφpt,Xpt, xqq ` Bxφpt,Xpt, xqqvpρpt,Xpt, xqqqqρ0pxqdx

“

ˆ
R
pBtφpt, xq ` Bxφpt, xqvpρpt, xqqqρpt, xqdx.

If we set fppq “ pvppq, integrating in time the previous equality leads to

0 “

ˆ 8
0

d

dt

ˆ
R
φpt, xqρpt, xqdx “

ˆ 8
0

ˆ
R
pBtφpt, xqρpt, xq ` Bxφpt, xqfpρpt, xqqdx.

Thus ρ is a weak solution to (1).

Let us recall that in general there is no classical solution to (1) and that solutions in the sense of
distributions are no unique. To single out a particular solution, one is led to introduce the notion of
entropy solution.

Definition 2.2. A (Kruzhkov) entropy solution to (1) is a map ρ P L8pR`ˆRq such that ρ P r0, Rs a.e.
and, such that, for any nonnegative C1 function φ with compact support in p0,8q ˆ R and any constant
k P r0, Rs, one has ˆ 8

0

ˆ
R
|ρ´ k|Btφ` sgnpρ´ kqpfpρq ´ fpkqqBxφ ě 0. (2)

The pair of maps pη, qqpu, kq “ p|u´ k|, sgnpu´ kqpfpyq ´ fpkqqq is an example of entropy pairs, i.e.,
satisfying q1 “ η1f 1. Note that the condition reads in a more compact way: for any k P r0, Rs,

Btpηpu, kqq ` Bxpqpu, kqq ď 0

in the sense of distribution. It turns out that under the conditions on f above, the solution ρ depends
continuously on time, i.e., ρ P C0pr0,8q, L1

locpRqq.

Theorem 2.3 (Kruzhkov [38]). Assume that ρ0 P L
8pR, r0, Rsq. Then there exists a unique entropy

solution to (1) with initial condition ρ0.
In addition, the equation preserves mass

ˆ
R
ρpt, xqdx “

ˆ
R
ρ0pxqdx @t ě 0

and is L1´contractive: if ρ̃ is another solution of (1) with initial condition ρ̃0 P L
8pR, r0, Rsq X L1pRq,

then ˆ
R
|ρpt, xq ´ ρ̃pt, xq|dx ď

ˆ
R
|ρ0pxq ´ ρ0pxq|dx @t ě 0.

Remark 2.4. We have seen above that the semi-group defined by Equation (1) preserves the mass. Then
it is known [25] that it is L1´contractive if and only if it satisfies a comparison principle: if ρ1

0, ρ
2
0 are

two initial conditions in L8pR, r0, Rsq, with ρ1
0 ď ρ2

0 a.e., then the associated solutions ρ1 and ρ2 satisfy:
ρ1 ď ρ2 a.e.
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For a proof of Theorem 2.3, see for instance [12, 26, 38]. The proof of the uniqueness is based on the
entropy formulation and a doubling variable technique consisting in replacing the constant k in the entropy
formulation (2) by the other solution ρ̃ps, yq, integrate also in ps, yq. Choosing a suitable penalization in
the test function gives the uniqueness and the L1´contraction. Let us underline an intermediate step
towards the L1´contraction, which will be used later (see again [12, 26] for instance).

Proposition 2.5 (Kato’s inequality). If ρ and ρ̃ are two entropy solution to (1) starting from ρ0 P

L8pR, r0, Rsq and ρ̃0 P L
8pR, r0, Rsq respectively, then, for any test function φ P C1

c pr0,8qˆRq and any
t ą 0,

ˆ 8
0

|pρ´ ρ̃qpt, xq|φpt, xqdx

´

ˆ t

0

ˆ
R
|pρ´ ρ̃qps, xq|Btφps, xq ` sgnpρps, xq ´ ρ̃ps, xqqpfpρps, xqq ´ fpρ̃ps, xqqqBxφps, xq

ď

ˆ 8
0

|pρ0 ´ ρ̃0qpxq|φp0, xqdx.

Taking φ ” 1 gives the L1´contraction. In fact, one can derive from this inequality a finite speed of
propagation property.

Let us finally underline that there exists many CL models in traffic flow. We only discuss here the
simplest one. Another very popular one is a so-called second-order model (also called ARZ model, after
Aw-Rascle [4] and Zhang [49]), which involves an additional equation for the pressure: Namely,

"

Btρ` Bxpρvq “ 0
Btrv ` ppρqs ` Bxrρvpv ` ppρqqs “ 0

The unknown are the density ρ and velocity v. The other conserved variable rρpv ` ppρqqs is the so-
called generalized momentum of the system. The given function p is the pressure function and accounts
for drivers’ reactions to the state of traffic in front of them. The paper [5] explains that the particle
counterpart of this system takes the form

#

9xiptq “ V i

9V i “ p1p 1
xi`1´xi q

V i`1
´V i

pxi`1´xiq2

See also [28] for a micro-macro derivation. Let us finally note that another popular second order discrete
model—the so-called Bando model [6]—leads to the more classical LWR model after scaling [32].

2.3 A second continuous models: the Hamilton-Jacobi equation

A second equation naturally associated with the traffic flow is the Hamilton-Jacobi equation:

Btupt, xq ` fpBxupt, xqq “ 0 (3)

The Hamiltonian f : r0, Rs Ñ R is the same as above: it is Lipschitz continuous, nonnegative and such
that fp0q “ fpRq “ 0 for some R ą 0. This Hamilton-Jacobi (HJ) equation is a kind of integrated
version of (1). In general the solution of (3) is expected to be at most Lipschitz continuous (no classical
solution). The correct notion of solution is the notion of viscosity solution.

Definition 2.6. A Lipschitz continuous map u : r0,8q ˆ RÑ R is a viscosity subsolution (resp. super-
solution) to (3) if, for any C1 test function φ “ φpt, xq such that u´φ has a strict local maximum (resp.
strict local minimum) at some point pt̄, x̄q P p0,8q ˆ R, one has

Btφpt̄, x̄q ` fpBxφpt̄, x̄qq ď 0 (resp. ě 0).

A viscosity solution is at the same time a subsolution and a supersolution.
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One easily checks that (in our context of Lipschitz continuous solution), a viscosity solution satisfies
the equation a.e.. The converse is false in general.

Theorem 2.7. Let u0 : RÑ R be Lipschitz continuous and such that u10 P r0, Rs a.e. Then there exists
a unique viscosity solution u to (3) satisfying the initial condition up0, ¨q “ u0.

In addition, the equation preserves L8´bounds and is L8´contractive: if u1
0, u

2
0 are two initial con-

ditions such that pu1
0q
1, pu2

0q
1 P r0, Rs a.e, then the associated solutions u1 and u2 satisfy

inf u1
0 ď u1 ď maxu1

0 @pt, xq P r0,8q ˆ R

and
}u1 ´ u2}8 ď }u

1
0pxq ´ u

2
0}8.

One can also show that the solution is stable with respect to locally uniform perturbation of the
Hamiltonian or of the initial condition. We refer to the classical references [7, 8, 24, 40]. The proof of the
uniqueness and the L8´contraction is an easy consequence of the following comparison principle (which
has—surprisingly—nothing to do with the comparison principle discussed for the CL):

Theorem 2.8 (Comparison). Let u and v be respectively a subsolution and a supersolution to (3). If
up0, ¨q ď vp0, ¨q in R, then u ď v in r0,8q ˆ R.

There is actually a strong relationship between the scalar conservation law (1) and the Hamilton-
Jacobi equation (3). Namely:

Proposition 2.9. If u is a viscosity solution to (3) in an open set O Ă p0,8q ˆ R, then ρ :“ Bxu is an
entropy solution to (1) in O.

Sketch of proof. We explain the argument when f is smooth, O “ p0,8q ˆ R and u is the solution to
(3) with a smooth initial condition u0 while ρ solves (1) with initial condition ρ0 “ Bxu0. The case of a
general case is explained in Appendix A.3 of [19].

The idea is that the entropy solution of the scalar conservation law (1) as well as the viscosity solution
of the HJ equation (3) can both be obtained as a vanishing viscosity limit: ρ “ limεÑ0` ρ

ε (in L1
loc) and

u “ limεÑ0` u
ε (in L8loc) where ρε and uε are the unique classical solution to

Btρ
ε ` Bxpfpρ

εqq “ εBxxρ
ε, ρεp0, ¨q “ ρ0

and
Btu

εpt, xq ` fpBxu
εpt, xqq “ εBxxu

εpt, xq, uεp0, ¨q “ u0.

On the other hand, in this smooth case, it is clear that, Bxu
ε is a smooth solution to the viscous conser-

vation law. By uniqueness, ρε “ Bxu
ε. Letting εÑ 0 gives the equality ρ “ Bxu.

2.4 A derivation of the LWR model from the follow-the-leader model

One of the interests to link between the scalar conservation law and the HJ equation is that it allows a
simple justification of the passage from the Follow-the-Leader model to the conservation law.

For N ą 0 large, let pXi
0qi“1,...,N be an initial condition for the FtL model satisfying (to fix the ideas)

Xi
0 ` emin ď Xi`1

0 @i P t1, . . . , N ´ 1u. (4)

(recall that emin ą 0 is such that V “ 0 on r0, emins). Let pXiq be the associated solution to the FtL
model:

"

9Xiptq “ V pXi`1ptq ´Xiptqq @i P t1, . . . , N ´ 1u, 9XN ptq “ maxV, t ě 0,
Xip0q “ Xi

0 @i P t1, . . . , Nu.
(5)

We define the (scaled) empirical measures

ρN ptq “
1

N

ÿ

iPt0,...,Nu

δN´1XipNtq, t ě 0, (6)

where δa is the Dirac mass at a P R. The ratio 1{N in front of the sum is clear: we thus obtain a
probability on R. The whole point is that we want to see a continuous density, and thus we have to scale
space by N´1. The scaling in time by N is here to see some motion to the scaled flow.
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Theorem 2.10 (Micro-Macro derivation on the line). Assume that the initial condition

ρN0 “
1

N

ÿ

iPt0,...,Nu

δN´1Xi
0

(7)

satisfies (4) and converges weakly-* in the sense of measures to some density ρ0 as N Ñ 8. Then
ρ0 P r0, Rs a.e. and pρN q converges in the sense of distributions and as N Ñ 8 to the entropy solution
ρ of the LWR model with fppq :“ pV p1{pq and with initial condition ρ0.

Many derivation of this result—with variants—are known: see [5, 22, 27, 34, 35] to quote only a few.
The argument developed below are relatively elementary: the proof relies on simple estimates and on the
relationship between CL and HJ equation as explained in Proposition 2.9. In fact, as proved in [27], one
can show that (under stronger assumptions on the flux and with much more work), that a regularized
version of the empirical density is “almost” an entropy solution to the scalar conservation law; in fact it
actually enjoys BV estimates which are typical of scalar conservation laws: see below.

Note that, as V : R` Ñ R` is Lipschitz continuous, nondecreasing and bounded, and satisfies V “ 0
on r0, emins for some emin ą 0, then f : r0, Rs Ñ R` given by fppq “ pV p1{pq is Lipschitz continuous in
p0,8q and satisfies fp0q “ fpRq “ 0 for R “ 1{emin. If in addition V is concave in remin,8q, then f is
concave and Lipschitz in r0, Rs.

A typical example of map V is given by V peq “ A´Bx´1 is e ą emin :“ A´1B (for some A,B ą 0).
Then fprq “ Ar ´Br2 for r P r0, Rs, with R :“ AB´1.

Sketch of proof of Theorem 2.10. Let uN pt, xq “ ρN pt, p´8, xsq for any t. Note that Bxu
N “ ρN in the

sense of distributions. Moreover the uN are nondecreasing in space and nonincreasing in time (because
the Xi are increasing). Finally, uN is u.s.c. The main part of the proof consists in checking that uN

converges to the unique viscosity solution u to the HJ equation (3) with initial condition u0, where u0pxq
is the antiderivative of ρ0 which vanishes at ´8.

Let us first assume the convergence for a while and explain how to conclude. As Bxu
N “ ρN is the

sense of distributions, and as uN converges to u, ρN converges to ρ :“ Bxu in the sense of distribution.
But we know by Proposition 2.9 that, as u solves the HJ equation, ρ “ Bxu is the entropy solution ρ of
the LWR model with fppq :“ pV p1{pq and with initial condition ρ0. This shows the convergence of ρN to ρ.

We now turn to the proof of the convergence of uN . We first check that the sequence uN is relatively
compact for the local uniform convergence and that any cluster point is Lipschitz continuous, with
Bxu P r0, Rs. Indeed, by Proposition 2.1, the Xi satisfy

min
i“1,...,N´1

Xi`1ptq ´Xiptq ě min
i“1,...,N´1

Xi`1
0 ´Xi

0 ě emin @t ě 0.

Thus, on a (microscopic) space interval rA,Bs, there are at most pB ´ Aq{emin ` 1 vehicles. Hence, at
the microscopic scaling, if a ď b,

0 ď uN pt, bq ´ uN pt, aq “ ρN pt, pa, bsq ď pb´ aq{emin ` 1{N. (8)

This shows that the uN are almost Lipschitz in space. On the other hand, if we fix a vehicle i P t1, . . . , Nu,
then t Ñ uN pt,N´1XipNtqq is constant (and equal to N´1pi ´ 1q). As the Xi are uniformly Lipschitz,
we get, for 0 ď s ď t,

uN ps,N´1XipNsqq “ uN pt,N´1XipNtqq ď uN pt,N´1XipNsq ` Cpt´ sqq

ď uN pt,N´1XipNsqq ` Cpt´ sq ` 1{N.

As uN is nonincreasing in time, we infer that, for x “ N´1XipNsq,

|uN ps, xq ´ uN pt, xq| ď Cpt´ sq ` 2{N.
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As uN is constant between two N´1XipNsq we can conclude that the uN are almost uniformly Lips-
chitz continuous in time as well. Finally we note that uN P r0, 1s for any N . Thus the sequence uN

is relatively compact for the local uniform convergence. In addition if u is any cluster point, then esti-
mate (8) implies that 0 ď upt, bq´upt, aq ď pb´aq{emin if a ă b, so that Bxu P r0, Rs a.e., since R “ 1{emin.

We now assume that puN q converges (along a subsequence denoted in the same way) to a map u
locally uniformly. We claim that u is the unique viscosity solution to (3) with initial condition u0. This
is enough to show that the whole sequence puN q converges to u. We note that u is Lipschitz continuous
and satisfies the initial condition, as well as the condition Bxu P r0, Rs.

We will only explain the subsolution property, as the supersolution is similar (but slightly more
technical). Let φ be a C1 test function such that u ´ φ has a strict local maximum at some point
pt̄, ȳq P p0,8q ˆ R. We have to check that

Btφpt̄, ȳq ` fpBxφpt̄, ȳqq ď 0. (9)

Note that, if Bxφpt̄, ȳq “ 0, then the result is obvious because, as u is nonincreasing in time, Btφpt̄, ȳq ď 0
while fpBxφpt̄, ȳqq “ fp0q “ 0. From now on we assume that Bxφpt̄, ȳq ą 0 (recall that u is nondecreasing
in space, so that necessarily Bxφpt̄, ȳq ě 0).

As uN converges to u locally uniformly and u´φ has a strict local maximum at pt̄, ȳq (recall also that
uN is u.s.c.), standard argument in viscosity solutions [7, 8, 24, 40] show the existence of ptN , yN q Ñ pt̄, ȳq
such that uN ´ φ has a local maximum at ptN , yN q. This means that, for pt, xq close to ptN , yN q,

uN pt, xq ď φpt, xq ` uN ptN , yN q ´ φptN , yN q. (10)

We note that, if N is large enough, there exists iN P t1, . . . , N´1u such that yN “ N´1XiN ptN q. Indeed,
otherwise uN is locally constant near ptN , yN q, and (10) contradicts the fact that Bxφpt

N , yN q ą 0 for N
large enough.

Recall now that t Ñ uN pt,N´1XiN pNtqq is constant in time. Choosing x “ N´1XiN pNtq in (10)
and taking the derivative in time of the resulting expression, we infer that

0 “ Btφpt
N , yN q ` Bxφpt

N , yN q 9XiN pNtN q

“ Btφpt
N , yN q ` Bxφpt

N , yN qV pXiN`1pNtN q ´XiN pNtN qq, (11)

where we used (5) in the second equality. Note that, if pXiN`1pNtN q ´ XiN pNtN qq tends to infinity
along a subsequence, then passing to the limit in (11) along this subsequence yields to

0 “ Btφpt̄, x̄q ` Bxφpt̄, ȳqmaxV ě Btφpt̄, ȳq ` fpBxφ̄pt, xqq.

Thus (9) holds.

We now assume that pXiN`1pNtN q ´XiN pNtN qq is bounded. By the very definition of uN and ρN ,

uN ptN , N´1XiN`1pNtN qq “ uN ptN , yN q ` 1{N . Hence, still by (10),

uN ptN , XiN`1pNtN qq “ uN ptN , yN q ` 1{N

ď φptN , N´1XiN`1ptN qq ` uN ptN , yN q ´ φptN , N´1XiN ptN qq.

Hence

1{N ď φptN , N´1XiN`1pNtN qq ´ φptN , N´1XiN pNtN qq

“ Bxφpt
N , yN qN´1pXiN`1ptN q ´XiN ptN qq ` op1{Nq.

Recalling that Bxφpt
N , yN q ą 0, we infer that

XiN`1ptN q ´XiN ptN q ě
1

BxφptN , yN q
` op1q.
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As V is nondecreasing and Lipschitz, we get from (11) and the definition of f that

0 ě Btφpt
N , yN q ` Bxφpt

N , yN qV p1{Bxφpt
N , yN qq ´ op1q “ Btφpt

N , yN q ` fpBxφpt
N , yN qq ´ op1q.

We obtain inequality (9) by letting N Ñ8.

2.5 Extensions

2.5.1 Stronger convergence results

In fact the convergence in Theorem 2.10 can be strongly sharpened. One of the very nice discoveries of
[27] is to explain that the solution of the follow-the-leader model almost solves the LWR equation. To
this see, let pXiq be a solution to the FtL model (5) and let us set

yiptq “
1

Xi`1pNtq ´XipNtq
, xiptq “ N´1XipNtq.

We introduce the discrete density

ρ̃N pt, xq “
N´1
ÿ

i“1

yiptq1rxiptq,xi`1ptqq.

To obtain a convergence of ρ̃N , we need to suppose stronger conditions on the flux.

Assumption on the flux. we assume that the flux f : r0, Rs Ñ R` is of class C2 and uniformly
concave, with fp0q “ fpRq “ 0. We denote by V : R` Ñ R` the velocity of the discrete model. It is
defined by V peq “ efp1{eq for e P remin,8q, where emin :“ 1{R, and V peq “ 0 on r0, emins. We note
that V is Lipschitz continuous, nondecreasing and bounded on R`, and of class C2 on pemin,8q. We set
Vmax “ maxV “ f 1p0q. Finally, setting vprq “ V p1{rq, we assume that r Ñ rv1prq is nonincreasing on
p0, ρmaxq.

Example. For instance, if fprq “ Ar ´ Br2 (for A,B ą 0) and ρmax “ AB´1, then vprq “ A´ Br is
defined on r0, AB´1s and is such that r Ñ rv1prq “ ´Br is nonincreasing, while V , defined by V pxq “ 0
on r0, emins with emin “ A´1B “ 1{ρmax and V pxq “ A´Bx´1 if x ą emin, is nondecreasing and bounded.

Theorem 2.11 (Sharp estimates on ρ̃N [27]). Under our assumptions above, we have:

• (BV estimate) There is a constant C, depending on the diameter of the support of ρ̃N p0, ¨q, such
that, for any t ě 0,

TV pvpρ̃N pt, ¨qqq ď mintTV pvpρ̃N p0, ¨qqq, Cp1` t´1qu.

• (Approximate entropy inequality) For any k ě 0 and any φ P C1
c pp0,8q ˆ Rq with φ ě 0,

ˆ 8
0

ˆ
R
|ρ̃N´k|φt`sgnpρ̃N´kqpfpρ̃N q´fpkqqφx ě ´N

´1 sup
t
TV pvpρ̃N pt, ¨qq

ˆ 8
0

}φxpt, ¨q}8dt. (12)

Note that (12) means that ρ̃N is an approximate entropy solution of the conservation law (1). Using
additional bounds on ρ̃N allow to pass to the limit in (12) and prove the L1 convergence of ρ̃N to the
unique solution ρ̃ of (1): see Theorem 2.3. in [27].

Proof. We check below the proof of the inequality

TV pvpρ̃N pt, ¨qqq ď TV pvpρ̃N p0, ¨qqq. (13)

The proof of the very nice inequality

TV pvpρ̃N pt, ¨qqq ď Cp1` t´1q
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is more technical and given in [27, Proposition 3.6]. To prove (13) we first note that

TV pvpρ̃N pt, ¨qqq “
N´1
ÿ

i“0

ˇ

ˇvpyi`1ptqq ´ vpyiptqq
ˇ

ˇ ,

where, for i “ 1, . . . , N ´ 1,

yiptq :“
1

Xi`1pNtq ´XipNtq

and where, by convention, X0ptq “ ´8, XN`1ptq “ 8 and thus y0ptq “ yN ptq “ 0.
We note that, for i “ 1, . . . , N ´ 1,

9yiptq “ ´pyiptqq2N
`

vpyi`1ptqq ´ vpyiptqq
˘

.

Thus

d

dt
TV pvpρ̃N pt, ¨qqq “

N´1
ÿ

i“0

sgn
`

vpyi`1ptqq ´ vpyiptqq
˘ `

v1pyi`1ptqq 9yi`1ptq ´ v1pyiptqq 9yiptq
˘

“ ´sgn
`

vpy1ptqq ´ vpy0ptqq
˘

v1py0ptqq 9y0ptq ` sgn
`

vpyN ptqq ´ vpyN´1ptqq
˘

v1pyN ptqq 9yN ptq

`

N´1
ÿ

i“1

v1pyiptqq 9yiptq
`

sgn
`

vpyiptqq ´ vpyi´1ptqq
˘

´ sgn
`

vpyi`1ptqq ´ vpyiptqq
˘˘

.

The first two terms vanish. As, for i “ 1, . . . , N ´ 1,

v1pyiptqq 9yiptq
`

sgn
`

yiptq ´ yi´1ptq
˘

´ sgn
`

yi`1ptq ´ yiptq
˘˘

“ ´v1pyiptqqpyiptqq2N
`

vpyi`1ptqq ´ vpyiptqq
˘ `

sgn
`

vpyiptqq ´ vpyi´1ptqq
˘

´ sgn
`

vpyi`1ptqq ´ vpyiptqq
˘˘

ď 0,

since z Ñ vpzq is non increasing, we infer that

d

dt
TV pρ̃N pt, ¨qqq ď 0.

We now check that ρ̃N is an approximate entropy solution, which is actually the key argument of the
proof of [27, Theorem 2.3]. Fix k ě 0 and φ P C1

c with φ ě 0. We set

xiptq “ N´1XipNtq for i “ 1, . . . , N, x0ptq “ ´8, xN`1ptq “ 8,

and compute

d

dt

ˆ
R

ˇ

ˇρ̃N ptq ´ k
ˇ

ˇφpt, xqdx “
d

dt

N
ÿ

i“0

ˆ xi`1
ptq

xiptq

ˇ

ˇyiptq ´ k
ˇ

ˇφpt, xqdx

“

ˆ
R

`ˇ

ˇρ̃N pt, xq ´ k
ˇ

ˇφtpt, xq ` sgnpρ̃N pt, xq ´ kqpfpρ̃N pt, xqq ´ fpkqqφxpt, xq
˘

dx`Rptq

where

Rptq “
N
ÿ

i“0

ˆ xi`1
ptq

xiptq

sgn
`

yiptq ´ k
˘ “

9yiptqφpt, xq ´ pyiptqvpyiptqq ´ kvpkqqφxpt, xq
‰

dx

`

N
ÿ

i“0

ˇ

ˇyiptq ´ k
ˇ

ˇ

“

φpt, xi`1ptqq 9xi`1ptq ´ φpt, xiptqq 9xiptq
‰

“

N´1
ÿ

i“1

J iptq `
N
ÿ

i“1

Kiptqφpt, xiptqq,

9



with, for i “ 1, . . . , N ´ 1,

J iptq “ sgn
`

yiptq ´ k
˘ 9yiptq

Nyiptq

˜

Nyiptq

ˆ xi`1
ptq

xiptq

φpt, xqdx´ φpt, xi`1ptqq

¸

“´ yiptqsgn
`

yiptq ´ k
˘

pvpyi`1ptqq ´ vpyiptqqq

˜

Nyiptq

ˆ xi`1
ptq

xiptq

pφpt, xq ´ φpt, xi`1ptqqqdx

¸

and, for i “ 2, . . . , N ´ 1,

Kiptq “ sgn
`

yi´1ptq ´ k
˘ 9yi´1ptq

Nyi´1ptq

` sgn
`

yiptq ´ k
˘

pyiptqvpyiptqq ´ kvpkqq ´ sgn
`

yi´1ptq ´ k
˘

pyi´1ptqvpyi´1ptqq ´ kvpkqq

` 9xiptq
`
ˇ

ˇyi´1ptq ´ k
ˇ

ˇ´
ˇ

ˇyiptq ´ k
ˇ

ˇ

˘

“´ yi´1ptqsgn
`

yi´1ptq ´ k
˘

pvpyiptqq ´ vpyi´1ptqqq

` sgn
`

yiptq ´ k
˘

pyiptqvpyiptqq ´ kvpkqq ´ sgn
`

yi´1ptq ´ k
˘

pyi´1ptqvpyi´1ptqq ´ kvpkqq

` vpyiptqq
`
ˇ

ˇyi´1ptq ´ k
ˇ

ˇ´
ˇ

ˇyiptq ´ k
ˇ

ˇ

˘

“ kpvpyiptqq ´ vpkqq
`

sgn
`

yiptq ´ k
˘

´ sgn
`

yi´1ptq ´ k
˘˘

ď 0,

since v is nonincreasing. Finally

K1ptq “ ´kvpkq ` sgnpy1 ´ kq
`

y1vpy1q ´ kvpkqq
˘

` kvpy1q ´ |y1 ´ k|vpy1q

“ k
`

vpy1q ´ vpkq
˘ `

1` sgnpy1 ´ kq
˘

ď 0

and

KN ptq “ sgn
`

yN´1ptq ´ k
˘ 9yN´1ptq

NyN´1ptq
` sgnpyN ´ kq

`

yNvpyN q ´ kvpkq
˘

´ sgnpyN´1 ´ kq
`

yN´1vpyN´1q ´ kvpkq
˘

` 9yN p|yN´1 ´ k| ´ |yN ´ k|q

“ ´ yN´1sgnpyN´1 ´ kq
`

vpyN q ´ vpyN´1q
˘

` sgnpyN ´ kq
`

yNvpyN q ´ kvpkq
˘

´ sgnpyN´1 ´ kq
`

yN´1vpyN´1q ´ kvpkq
˘

` vpyN qp|yN´1 ´ k| ´ |yN ´ k|q

“k pvpkq ´ Vmaxq p1` sgnpyN´1 ´ kqq ď 0.

We note that
J iptq ď |yiptq|

ˇ

ˇvpyi`1ptqq ´ vpyiptqq
ˇ

ˇ }φxpt, ¨q}8|x
i`1ptq ´ xiptq|,

so that
N´1
ÿ

i“1

J iptq ď N´1TV pvpρ̃N ptqq}φxpt, ¨q}8.

As

0 “

ˆ 8
0

ˆ
R

`
ˇ

ˇρ̃N pt, xq ´ k
ˇ

ˇφtpt, xq ` sgnpρ̃N pt, xq ´ kqpfpρ̃N pt, xqq ´ fpkqqφxpt, xq
˘

dxdt`

ˆ 8
0

Rptqdt,

we obtain
ˆ 8

0

ˆ
R

`
ˇ

ˇρ̃N pt, xq ´ k
ˇ

ˇφtpt, xq ` sgnpρ̃N pt, xq ´ kqpfpρ̃N pt, xqq ´ fpkqqφxpt, xq
˘

dxdt

ě ´

ˆ 8
0

N´1
ÿ

i“1

J iptqdt ě ´N´1 sup
t
TV pvpρ̃N ptqq

ˆ 8
0

}φxpt, ¨q}8dt.
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2.5.2 Inhomogeneous models

A natural extension of Theorem 2.10 concerns the case where vehicles are inhomogeneous (see [21]). Let
us describe this setting which will be useful below to handle problems with a bifurcation. To fix the ideas,
we explain here a case in which there are trucks and cars on the road. Note that the velocity rule V in
the FtL model should certainly depend on the fact that the vehicle is a car or a truck (at the very least!).
In order to describe the fact that there is a given proportion p of cars—and thus p1 ´ pq of trucks—for
some p P p0, 1q on the road, one is led to introduced a random FtL model:

9Xiptq “ VZipXi`1ptq ´Xiptqq, @i P t1, . . . , N ´ 1u, 9XN ptq “ maxVZN , @t ě 0,

where now V “ Vzpxq also depends on the type z P t0, 1u of the vehicle: say, Zi “ 1 if the vehicle is
a car and Zi “ 0 if it is a truck. We assume that the pZiq are independent random variables, with a
Bernoulli law of with a parameter p: PrZi “ 1s “ p, PrZi “ 0s “ 1 ´ p. This assumption is natural in
the case where vehicles cannot overtake each other, as one can think that then the vehicle have arrived
on the road at random. The assumptions on Vz are as before: for z P t0, 1u, Vz is Lipschitz continuous,
increasing on rvz,min,8q and vanish on r0, vz,mins.

We define the measure ρN by (6) and note that, in our setting, ρN is random.

Theorem 2.12 (Micro-Macro derivation in the inhomogeneous case [21]). Assume that the initial con-
dition ρN0 defined in (7) satisfies (4) and converges weakly-* in the sense of measures to some density
ρ0 as N Ñ 8. Then pρN q converges a.s., in the sense of distributions and as N Ñ 8, to the entropy
solution ρ of the LWR model with initial condition ρ0 and with a flux f̄ defined as follows:

f̄ppq “ pV̄ p1{pq, (14)

where, if we set v̄ “ mintsupV0, supV1u, then V̄ : r0,8q Ñ r0, v̄s is given by

V̄ peq “ v ðñ e “ pV ´1
1 pvq ` p1´ pqV ´1

0 pvq @v P p0, v̄q.

Remarks 2.13. 1. By the definition of V̄ , V̄ vanishes in r0, pv1,min`p1´pqv0,mins. On the other hand
the maximal speed in the limit problem is the minimum v̄ “ mintsupV0, supV1u of the maximal
speeds of each type of vehicle.

2. Let us point out that if one insists to remain determinist and keep track of the type of the vehicles
(i.e., the density of cars and the density of trucks), the limit should be a system of conservation
laws, somehow related to the ARZ model.

3. We do not know if stronger estimates (as in Theorem 2.11) or stronger convergence results (L1´convergence
for instance) hold in this context.

The proof of Theorem 2.12 is not difficult, but to give all the details would take some place. We only
explain the definition of f̄ . In principle this is a problem of stochastic homogenization of Hamilton-Jacobi
equations (see the pioneering work [47]). It turns out that, in contrast with most of these problems, there
exists “correctors” in our setting, i.e., self-similar solutions for the discrete model. These self-similar
solutions, which we describe now, explain the definition of f̄ . Let us set v̄ “ mintsupV0, supV1u and
fix v P p0, v̄q. As the Vzp¨q are increasing and continuous, there exists a unique evz “ V ´1

z pvq such that
Vzpe

v
zq “ v, for z P t0, 1u. Let us define pY v,i0 qiPN by Y v,00 “ 0 and Y v,i`1

0 ´ Y v,i0 “ evZi
for any i P N.

Then the family pY v,iq defined by

Y v,iptq “ Y v,i0 ` vt @i P N, t ě 0

solves
9Y v,iptq “ v “ VZi

pevZi
q “ VZipY v,i`1ptq ´ Y v,iptqq, @i P N, @t ě 0,

Therefore pY v,iq is a self-similar solution to the equation. On the other hand,

lim
iÑ8

Y v,i0

i
“ lim
iÑ8

1

i

i´1
ÿ

j“0

pY v,j`1
0 ´ Y v,j0 q “ lim

iÑ8

1

i

i´1
ÿ

j“0

evZi
“ E reZ0

s “ pev1 ` p1´ pqe
v
0 a.s.
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by the law of large numbers. This easily implies that the empirical density

ρNY ptq “ N´1
ÿ

iPN
δN´1Y v,ipNtq,

weakly converges to the distribution

ρpt, dxq “ ppev1 ` p1´ pqe
v
0q
´11rvt,8qdx :“ ρ̄1rvt,8q,

where ρ̄ :“ ppev1 ` p1 ´ pqev0q
´1. Note that, if Theorem 2.12 holds, then ρ should be at least a weak

solution to the CL (1), with f̄ instead of f (i.e., a solution to the so-called the Riemann problem with
initial condition ρ0pxq “ ppe

v
1`p1´pqe

v
0q
´11xě0). This means that, for any test function φ with compact

support in p0,8q ˆ R,

0 “

ˆ 8
0

ˆ
R
pρBtφ` fpρqBxφqdxdt “

ˆ 8
0

ˆ 8
vt

pρ̄Btφ` fpρ̄qBxφqdxdt

“

ˆ 8
0

ˆ x{v

´8

ρ̄Btφdtdx´ fpρ̄q

ˆ 8
0

φpt, vtqdt “ ρ̄

ˆ 8
0

φpx{v, xqdx´ fpρ̄q

ˆ 8
0

φpt, vtqdt

“ pρ̄v ´ fpρ̄qq

ˆ 8
0

φpt, vtqdt.

This implies the classical Rankine-Hugoniot condition: f̄pρ̄q “ ρ̄v, which is exactly (14).

3 Traffic flow on a 1:1 junction

In this section, we consider an elementary junction, seen at the micro level as a short section of road
connecting two long homogeneous (half-)roads. We seek to model for instance a passage from a large
road to a smaller one; or to describe a speed bump on a long homogeneous road (or both). When we go
from the micro model to the macro one after scaling, the junction reduces to a point. Of course we expect
to obtain at the macro model an LWR model on either side of this junction point. On the other hand,
the conditions to be put at the junction point itself are less clear. One feels that these conditions must
in one way or another reflect the microscopic behavior: if there is a speed bump on the road for instance,
the size of this speed bump should matter. Note that the continuous model is not completely obvious,
because, at the level of conservation law, it should involve an information on a set which has a zero
Lebesgue measure (the junction point). Our aim is present first a Follow-the-Leader model adapted to
this context, then to discuss the continuous models, at the conservation level and at the Hamilton-Jacobi
one, and finally to briefly explain how to pass from the micro model to the macro one.

Note that the junction we are studying is very simple: it links one incoming road to one outgoing
one, whence the name of a 1:1 junction. We will discuss in the last part the (much more complex) case
of p:q junctions, where p is the number of incoming road and q the number of outgoing ones.

3.1 A discrete model

We consider a traffic flow on the line in which again vehicles are ordered and cannot overtake each other.
Let N P N be the number of vehicles and, for i P t1, . . . , Nu, let Xiptq the position of vehicle labelled i
at time t. We assume without loss of generality that Xiptq ď Xi`1ptq for any i and t. In this discrete
model, we assume that the vehicles are slowed down at the junction by a speed bump or a traffic light.
In this case the equation for the vehicles takes the form

9Xiptq “W pXi`1ptq ´Xiptq, t,Xiptqq, t ě 0, i P t1, . . . , N ´ 1u. (15)

where W is a local perturbation of a fixed velocity rule V : Typically, we assume the following:

1q W : r0,8q ˆ Rˆ r0,8q Ñ r0,8q is Lipschitz continuous, bounded,
nondecreasing in the first variable and T´periodic in time (for some T ą 0),

2q There exists emin ą 0 such that W pe, t, xq “ 0 for e ď emin,
3q There exists V : r0,8q Ñ r0,8q, Lipschitz continuous and nondecreasing,

such that W pe, t, xq “ V peq if |x| ěM and W ď V everywhere.

(16)
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Some comments on the assumption are in order: note first that W is a local perturbation of V , which
satisfies the hypothesis of the flux of the previous section. We also assume that V is time periodic, having
in mind a traffic periodically blocked by a traffic light. The velocity rule V before and after the junction
could be different, in order to take into account a change in the configuration of the road. This would
not make the problem more difficult (just increase the notation).

As in Proposition 2.1 one can check the existence and the uniqueness of a solution, given an initial
condition. Moreover,

Xi`1ptq ě Xiptq ` emin @t ě 0, @i P t1, . . . , Nu, (17)

provided that this inequality holds at time t “ 0. Of course, although this is not explicit in the notation,
the solution pXiq depends on the number N of vehicles and on the initial condition.

We set as in Subsection 2.4:

ρN ptq “
1

N

ÿ

iPt0,...,Nu

δN´1XipNtq, t ě 0, (18)

The question discussed in this part is the existence of a limit for the ρN and its identification. To do so
we discuss next the continuous limits models.

3.2 Scalar conservation law on a 1:1 junction: the approach by germs

The limit equation—at the conservation law level—takes the form of our usual LWR model outside the
junction x “ 0, complemented with a condition at the junction. Namely, it reads

$

&

%

Btρ` Bxpfpρqq “ 0 in p0,8q ˆ pRzt0uq
pρpt, 0´q, ρpt, 0`qq P G in p0,8q ˆ t0u
ρp0, xq “ ρ0pxq in t0u ˆ R

Here pρpt, 0´q, ρpt, 0`qq is the “trace” of ρ at x “ 0 and the “germ” G is a subset of R` ˆ R` keeping
track of the local perturbation at the junction. We explain these notions next.

3.2.1 Trace, Rankine-Hugoniot condition and dissipation

We fix here f : r0, Rs Ñ R` such that fp0q “ fpRq “ 0. We assume that f is Lipschitz continuous and
strictly concave in r0, Rs.

Let us start with the notion of trace. Let ρ be an entropy solution to the scalar conservation law in
the half-line

Btρ` Bxpfpρqq “ 0 in p0, T q ˆ p0,8q.

Theorem 3.1. There exists a map u P L8p0, T q such that

ess-limεÑ0`

ˆ T

0

|ρpt, εq ´ uptq|dt “ 0.

The limit u is called the trace of ρ on x “ 0 and denoted by ρp¨, 0`q.

The result holds in a much more general framework and for weaker notions of solutions: see [45, 48].
We refer to these references for a proof. Of course a symmetric result holds on the left-half-space p´8, 0q,
in which case the trace is denoted by ρpt, 0´q.

Our next aim is now to show first that solutions of the scalar conservation law satisfy natural conditions
at (fixed) points of discontinuities. Note carefully that we are interested here in the possibility for the
solution to have a shock at a given point for an amount of time of positive measure.

Proposition 3.2. Assume that ρ P L8 is an entropy solution to

Btρ` Bxpfpρqq “ 0 (19)

in p0, T qˆ pRzt0uq. Then ρ is a weak solution to (19) in p0, T qˆR if and only if it satisfies the Rankine-
Hugoniot condition

fpρpt, 0´qq “ fpρpt, 0`qq for a.e. t P p0, T q.

13



For instance, the stationary function ρpt, xq “ p´1xă0`p
`1xą0 is a weak solution to the conservation

law, if and only if, fpp´q “ fpp`q, because constants are (weak) solutions to (19). On the other hand,
let us recall that ρpt, xq “ p´1xăλt ` p

`1xąλt is a weak solution to (19), if and only if, fpp`q ´ fpp´q “
λpp` ´ p´q.

Proof. We fix a smooth cut-off function ψ : R Ñ r0, 1s which is equal to 1 outside p´2, 2q and vanishes
in r´1, 1s. For ε ą 0, we set ψεpxq “ ψpx{εq. Let φ P C1

c pp0,8q ˆ Rq. As ρ P L8 is a weak solution to
(19) in p0, T q ˆ pRzt0uq, we have, using pt, xq Ñ φpt, xqψεpt, xq as a test function,

ˆ 8
0

ˆ
R
ρpt, xqφtpt, xqψεpt, xq ` fpρpt, xqqpφxpt, xqψεpt, xq ` φpt, xqψε,xpxqq dxdt “ 0. (20)

Note that, for any t ą 0,

lim
εÑ0

ˆ
R
fpρpt, xqqφpt, xqψε,xpxq “ lim

εÑ0

ˆ 2

´2

fpρpt, εyqqφpt, εyqψxpyqdy

“

ˆ 0

´2

fpρpt, 0´qqφpt, 0qψxpyqdy `

ˆ 2

0

fpρpt, 0`qqφpt, 0qψxpyqdy

“ fpρpt, 0`qqφpt, 0q ´ fpρpt, 0´qqφpt, 0q,

since ψp0q “ 0 while ψp2q “ ψp´2q “ 1. So, as εÑ 0, we obtain from (20) that

ˆ 8
0

ˆ
R
ρpt, xqφtpt, xq ` fpρpt, xqqφxpt, xq dxdt`

ˆ 8
0

fpρpt, 0`qqφpt, 0q ´ fpρpt, 0´qqφpt, 0q dt “ 0.

This implies that, if ρ satisfies the Rankine-Hugoniot condition, then it is a weak solution on p0, T q ˆR.
Conversely, if ρ is a weak solution on p0, T q ˆ R, then

ˆ 8
0

fpρpt, 0`qqφpt, 0q ´ fpρpt, 0´qqφpt, 0q dt “ 0

for any test function φ. This easily implies that ρ satisfies the Rankine-Hugoniot condition.

Next we investigate the case of an entropy solution. Let us start with a few notation. Recall that f is
strictly concave and nonnegative on r0, Rs. We set Amax “ max f and, for any A P r0, Amaxs, we denote
by p´A and p`A the smallest and the largest solution to fppq “ A. Note that p´A ă p`A unless A “ Amax.

Assume now that ρ is an entropy solution to (19) in p0, T qˆR. By the previous Proposition, we know
that the traces of ρ at x “ 0 satisfies the Rankine-Hugoniot condition. We set

Aptq “ fpρpt, 0´qq “ fpρpt, 0`qq.

If the solution ρ has shocks at x “ 0 and on a set I of positive measure, then we have necessarily
Aptq ă Amax a.e. in I and either pρpt, 0´q, ρpt, 0`qq “ pp´Aptq, p

`

Aptqq, or pρpt, 0´q, ρpt, 0`qq “ pp`Aptq, p
´

Aptqq.

The next result says that the later equality cannot happen: the solution can only increase through a
shock.

Proposition 3.3. Assume that ρ P L8 is an entropy solution to (19) in p0,8q ˆ R. We have, for a.e.
t P p0, T q, such that Aptq ă Amax,

pρpt, 0´q, ρpt, 0`qq ‰ pp`Aptq, p
´

Aptqq. (21)

Proof. Fix a smooth cut-off function ψ : RÑ r0, 1s which is equal to 0 outside p´2, 2q and equal to 1 in
r´1, 1s. For ε ą 0, we set ψεpxq “ ψpx{εq. Let φ P C1

c pp0,8q,R`q and k ě 0. As ρ P L8 is an entropy
solution to (19) in p0, T q ˆ R, we have, using pt, xq Ñ φpt, xqψεpt, xq as a test function,

ˆ 8
0

ˆ
R
|ρpt, xq ´ k|φ1ptqψεpxq ` sgnpρpt, xq ´ kqpfpρpt, xqq ´ fpkqqφptqψε,xpxq dxdt ě 0.
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We can pass to the limit and find, arguing as in the proof of Proposition 3.2 for the term in ψε,x,

´

ˆ 8
0

psgnpρpt, 0`q ´ kqpfpρpt, 0`qq ´ fpkqq ´ sgnpρpt, 0´q ´ kqpfpρpt, 0´qq ´ fpkqqqφptqdt ě 0.

This proves that, for any k ě 0,

sgnpρpt, 0`q ´ kqpfpρpt, 0`qq ´ fpkqq ´ sgnpρpt, 0´q ´ kqpfpρpt, 0´qq ´ fpkqqq ď 0 a.e.

Let k̄ be such that fpk̄q “ Amax. Then the inequality above reads, if Aptq “ fpρpt, 0`qq “ fpρpt, 0´qq ă
Amax,

sgnpρpt, 0`q ´ k̄q ě sgnpρpt, 0´q ´ k̄q.

This implies that pρpt, 0´q, ρpt, 0`qq ‰ pp`Aptq, p
´

Aptqq.

3.2.2 The notion of G´entropic solutions

We fix again a flux function f : r0, Rs Ñ R` such that fp0q “ fpRq “ 0. We assume that f is Lipschitz
continuous and strictly concave in r0, Rs and set Amax “ max f . We consider a 1:1 junction, meeting, to
fix the ideas, at x “ 0. We fix a flux limit limiter Ā P r0, Amaxq: this means that we expect the flux to
be not larger then Ā at x “ 0. This means that the value ρpt, 0´q “ ρpt, 0`q taken by a solution to our
problem at x “ 0 must satisfy

fpρpt, 0´qq “ fpρpt, 0`qq ď Ā.

On the other hand, if fpρpt, 0´qq “ fpρpt, 0`qq is less than Ā, the solution does not see the flux limiter
and thus should satisfy condition (21). Hence pρpt, 0´q, ρpt, 0`qq should take its values in the set

GĀ “ tpp´, p`q P r0, Rs2, A :“ fpp´q “ fpp`q ď Ā, and, if A ă Ā, then pp´, p`q ‰ pp`A, p
´
Aqu, (22)

where p´A and p`A are the smallest and the largest solution to fppq “ A. Note that GĀ is a closed set.
The above remark yields to the notion of GĀ´entropy solution for the scalar conservation law

"

Btρ` Bxpfpρqq “ 0 in p0,8q ˆ pRzt0uq
pρpt, 0´q, ρpt, 0`qq P GĀ a.e. in p0,8q ˆ t0u

(23)

Definition 3.4. We call a GĀ´entropy solution to (23) a map ρ P L8pp0,8q ˆ R, r0, Rsq is an en-
tropy solution to the scalar conservation law in p0,8q ˆ p´8, 0q and p0,8q ˆ p0,8q and that its trace
pρpt, 0´q, ρpt, 0`qq at x “ 0 belongs to GĀ for a.e. t ě 0.

The following result1 is largely due to [2], which introduces the notion of germ, of GĀ´solution and
for uniqueness of this solution; it also prove the contractivity property. The existence of a solution is
established in [18], which shows that germs defined by (22) are “good” germs.

Theorem 3.5. For any initial condition ρ0 P L
8pR, r0, Rsq, there exists a unique GĀ´solution to (23)

with initial condition ρ0. Moreover, the semi-group associated to this evolution equation is mass preserv-
ing: if in addition ρ0 P L

1pRq, then

ˆ
R
ρpt, xqdx “

ˆ
R
ρ0pxqdx @t ě 0,

Moreover the evolution is L1´contracting: if ρ̂ is an another solution to (23) associated with some initial
condition ρ̂0 P L

8pR, r0, Rsqq X L1pRq, then

}ρ̂ptq ´ ρptq}L1 ď }ρ̂0 ´ ρ0}L1 .

1In the context described here, the approach of [23] would also give the result. The notion of germ is especially useful
for a discontinuous flux function with a discontinuity at the junction, or more general junctions.
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One can check that the only L1´contracting semi-groups which coincide with the standard conser-
vation law outside x “ 0 are necessarily GĀ´solutions of a problem of the form (23) for some germ GĀ
given by (22): see [16].

The approach easily generalizes to space-discontinuous fluxes, with a discontinuity at x “ 0: namely,

fpx, pq “ f lppq1xă0 ` f
rppq1xą0, (24)

for some fluxes f l and fr satisfying the same conditions as f . In this setting, the natural condition to
be asked on Ā is that Ā P r0, A0s where A0 “ mintmax f l,max fru is the maximal possible flux for f l

and fr simultaneously. In fact the largest part of the literature dedicated to scalar conservation law on
a 1:1 junction is written to handle a discontinuous flux of this form and the lack of uniqueness of the
standard entropy solution in this setting. We have decided not to present the argument in this setting
for two reasons: the main one is because the notation for discontinuous fluxes are a little heavy and
the discontinuity would not bring any additional mathematical difficulty; second because we want to
underline that the flux-limiter makes sense even for a space independent flux.

Before proving the theorem, let us start with some preliminary remarks on the germ GĀ.

Lemma 3.6. The germ GĀ defined by (22) is dissipative: for any pc´, c`q, pd´, d`q P GĀ,

qpc`, d`q ď qpc´, d´q,

where qpp, cq “ sgnpp´ cqpfppq ´ fpcqq. It is also maximal in the sense that, for any c P r0, Rs2,

“

qpc`, d`q ď qpc´, d´q @d P GĀ
‰

ñ c P GĀ.

As we will see below, the first condition ensures the uniqueness of the solution. The maximality
implies the L1´stability of the solution, see [2].

Proof. The proof is tedious but elementary, and consists just in checking the different cases.

Sketch of proof of Theorem 3.5. The proof of the existence of a GĀ´solution is heavy: it relies on the
construction of a scheme to approximate the solution: we refer to [18] for instance.

Let us now explain the proof of the uniqueness. We assume that ρ and ρ̂ are two solutions to (23).
The key step is Kato’s inequality, which reads, for any nonnegative C1 test function ξ : r0,8qˆRÑ R`
with a compact support,

´

ˆ 8
0

ˆ
R
|ρpt, xq´ ρ̂pt, xq|Btξpt, xq`qpρpt, xq, ρ̂pt, xqqBxξpt, xq dxdt ď

ˆ
R
|ρp0, xq´ ρ̂p0, xq|ξp0, xq dx. (25)

One easily derives the contraction property from this new Kato’s inequality, exactly as in the standard
case.

To prove (25), we fix a smooth cut-off function ψ : RÑ r0, 1s which is equal to 1 outside p´2, 2q and
vanishes in r´1, 1s. For ε ą 0, we set ψεpxq “ ψpx{εq. As ρ is a solution to the scalar conservation and
as the test function pt, xq Ñ ξpt, xqψεpxq vanishes in a neighborhood of x “ 0, we have by the standard
Kato’s inequality (Proposition 2.5):

´

ˆ 8
0

ˆ
R
|ρpt, xq´ρ̂pt, xq|Btξpt, xqψεpxq`qpρpt, xq, ρ̂pt, xqqBxpξpt, xqψεpxqq ď

ˆ
R
|ρp0, xq´ρ̂p0, xq|ξp0, xqψεpxq.

As ε Ñ 0, the first and last term converge to the first and last terms in (25). As for the middle one, it
splits into the sum I1

ε ` I
2
ε , where

I1
ε :“

ˆ 8
0

ˆ
R
qpρpt, xq, ρ̂pt, xqqψεpxqBxξpt, xq,
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converges to the middle term in (25), and

I2
ε :“

ˆ 8
0

ˆ
R
qpρpt, xq, ρ̂pt, xqqξpt, xqBxψεpxq “

ˆ 8
0

ˆ
R
qpρpt, xq, ρ̂pt, xqqξpt, xqε´1ψ1pε´1xq.

After a change of variable, this last term can be rewritten as

I2
ε “

ˆ 8
0

ˆ 0

´8

qpρpt, εyq, ρ̂pt, εyqqqξpt, εyqψ1pyq `

ˆ 8
0

ˆ 8
0

qpρpt, εyq, ρ̂pt, εyqqξpt, εyqψ1pyq.

We let εÑ, 0` and use the notion of trace to get

lim I2
ε “

ˆ 8
0

ˆ 0

´8

qpρpt, 0´q, ρ̂pt, 0´qqqξpt, 0qψ1pyq `

ˆ 8
0

ˆ 8
0

qpρpt, 0`q, ρ̂pt, 0`qqξpt, 0qψ1pyq

“

ˆ 8
0

p´qpρpt, 0´q, ρ̂pt, 0´qqq ` qpρpt, 0`q, ρ̂pt, 0`qqqξpt, 0q ď 0

by Lemma 3.6 and because pρpt, 0´q, ρpt, 0`qq, pρ̂pt, 0´q, ρ̂pt, 0`qq P GĀ. Hence (25) holds.

3.3 HJ approach: flux limiter

We have seen in the case of a traffic flow on the line that the Hamilton-Jacobi approach to the traffic flow
problem provides some useful tools. For this reason, we discuss here the Hamilton-Jacobi counterpart
of the notion of GĀ´solution on a 1:1 junction. The literature on this topic is related to more general
questions of Hamilton-Jacobi equations and optimal control problems with discontinuities: we refer to
the pioneering works [1, 9, 13, 15, 36, 42] and to the monograph [10]. Unless otherwise stated the results
of this part are all borrowed from the work by Imbert and Monneau [36].

We fix a Hamiltonian f : r0, Rs Ñ R` as above. We still assume that f is uniformly concave on r0, Rs
and set Amax “ max f . We denote by f´ and f` the smallest nonincreasing and nondecrasing functions
above f , respectively. Given a flux-limiter Ā P r0, Amaxs, we consider the HJ equation

"

Btu` fpBxuq “ 0 in p0,8q ˆ pRzt0uq
Btu` FĀpBxupt, 0

´q, Bxupt, 0
`qq “ 0 in p0,8q ˆ t0u

(26)

where
FĀpp

´, p`q “ mintĀ, f`pp´q, f´pp`qu. (27)

The idea is that we want to force the solution u to satisfy Btu “ ´Ā at x “ 0. Indeed, equality Btu “ ´Ā
at x “ 0 is the counterpart of the flux condition fpρq “ Ā for the conservation law. However this equality
is not always possible to satisfy. As explained in [36], the equality Btu`FĀpBxupt, 0

´q, Bxupt, 0
`qq “ 0 is

the “effective” equality corresponding to this condition. Let us underline that the whole part could be
treated with a discontinuous Hamiltonian of the form (24) almost without change.

In order to explain the notion of viscosity solution for (26), we introduce the set PC1pJq of test func-
tions, consisting in the set of continuous maps φ : p0,8qˆRÑ R such that the restrictions φp0,8qˆ|p´8,0s

and φp0,8qˆ|r0,8q are C1. Note that such a map has not necessarily a space derivative at pt, 0q, but has a

left- and a right- space derivatives at this point, denoted by Bxφpt, 0
´q and Bxφpt, 0

`q respectively. On
the other hand, the time derivative Btφpt, 0q exists and is continuous at this point.

Definition 3.7. We say that u : r0,8ˆ R Ñ R is a (flux-limited) viscosity subsolution of (26) if u is
Lipschitz continuous in r0,8qˆR, with Bxu P r0, Rs a.e., if u is a viscosity subsolution of the HJ equation
in p0,8q ˆ pRzt0uq (in the standard sense, see Definition 2.6) and if, for any test function φ P PC1pJq
such that u´ φ has a local maximum at some point pt, 0q with t ą 0, then

Btφpt, 0q ` FĀpBxφpt, 0
´q, Bxφpt, 0

`qq ď 0.

A symmetric definition holds for supersolution. A solution is a map which is at the same time sub- and
supersolution.
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A few remarks are now in order. First we explain that the notion of supersolution at x “ 0 can be
understood almost in a classical sense:

Proposition 3.8. Let u be Lipschitz continuous in r0,8q ˆ R, with Bxu P r0, Rs a.e., and such that
u is a viscosity subsolution of the HJ equation in p0,8q ˆ pRzt0uq. Then u is a flux-limited viscosity
supersolution to (26), if and only if, for a.e. t ą 0 and in the viscosity sense,

Btupt, 0q ` Ā ě 0. (28)

Remark 3.9. Recall that, at least formally, Btupt, 0q “ ´fpBxupt, 0
`qq “ ´fpBxρpt, 0

´qq, so that (28)
indeed says that the flux is limited by Ā at x “ 0.

Proof. It is known that, for a linear inequality like (28) and a Lipschitz map like tÑ upt, ¨q, this inequality
holds a.e. if and only if it holds in the viscosity sense (see [37]).

Let us first assume that u is viscosity supersolution and let us check that (28) holds. Let φ “ φptq
be a smooth test function such that u ´ φ has a minimum at t̄ P p0,8q. Without loss of generality, we
assume that φpt̄q “ upt̄, 0q. As Bxu P r0, Rs, we have therefore

upt, xq ě upt, 0q `Rx1xă0 ě φptq `Rx1xă0,

with an equality at pt̄, 0q. Using the fact that u is viscosity supersolution, we infer that

0 ď φ1ptq `mintĀ, f`pRq, f´p0qq “ φ1ptq ` Ā,

since f`pRq “ f´p0q “ max f and Ā P r0,max f s.
Conversely, assume that u is a viscosity solution in p0,8qˆ pRzt0uq and satisfies (28) in the viscosity

sense. Let φ P PC1pJq be a test function and assume that u ´ φ has a strict local minimum at pt̄, 0q,
with t̄ ą 0. We are first going to check that

Btφpt̄, 0q ` f
´pφpt̄, 0`qq ě 0. (29)

We will see that this inequality holds just because u is a supersolution to the HJ equation in p0,8q2. For
this we argue by penalization. For ε ą 0 small, the map u´φ` ε{x has a local minimum at ptε, xεq, with
ptε, xεq Ñ pt̄, 0q as εÑ 0. Thus, as u is a supersolution to the HJ equation in p0,8q2, we infer that

Btφptε, xεq ` fpBxφptε, xεq `
ε

x2
ε

q ě 0.

But f ď f´ and f´ is nonincreasing while the term ε
x2 is positive. Thus

Btφptε, xεq ` f
´pBxφptε, xεqq ě 0.

Letting εÑ 0` gives (29). We obtain in a similar way the inequality

Btφpt̄, 0q ` f
`pφpt̄, 0´qq ě 0.

Finally, we note that t Ñ upt, 0q ´ φpt, 0q has a local minimum at t̄. Hence by (28) we infer that
Btφpt̄, 0q ` Ā ě 0. In conclusion, we have proved that

Btφpt̄, 0q `mintĀ, f`pφpt̄, 0´q, f´pφpt̄, 0`qqu ě 0,

which shows that u is a viscosity supersolution.

Next we explain that the set of test functions at the junction can be reduced drastically for subsolu-
tions.

Proposition 3.10 (Reduced test function). Let u be a Lipschitz continuous viscosity subsolution to the
HJ equation in p0,8q ˆ pRzt0uq. Then u is a viscosity subsolution to (26), if and only if, for any test
function of the form pt, xq Ñ φpxq `ψptq belonging to PC1pJq, such that fpBxφp0

´qq “ fpBxφp0
`qq “ Ā,

if u´ φ has a local maximum at some point pt, 0q with t ą 0, then

ψ1ptq ` Ā ď 0.
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Note that Proposition 3.8 says that a much stronger statement holds for supersolutions. The proof
is technical and can be found in [36] for instance. The key result on viscosity solution to (26) is the
following comparison principle, the proof of which also exceeds the scope of these short notes (see [36],
and also different arguments in [10, 42]).

Theorem 3.11 (Comparison). Let u and v be respectively a subsolution and a supersolution to (26). If
up0, ¨q ď vp0, ¨q in R, then u ď v in r0,8q ˆ R.

As a consequence, we have

Theorem 3.12 (Existence and uniqueness). Given a Lipschitz initial condition u0 : R Ñ R with u10 P
r0, Rs a.e., there exists a unique viscosity solution to (26) with initial condition u0.

As for CL/HJ on the line, there is a strong relationship between GĀ´entropy solutions to (23) and
flux limited viscosity solutions to (26).

Theorem 3.13 (From HJ to CL for 1:1 junctions [18]). Fix A P r0, Amaxs. If u : r0,8q ˆ R Ñ R is a
Lipschitz map such that Bxu P r0, Rs a.e. is a viscosity solution to (26) with FĀ defined in (27), then
ρ “ Bxu is a GĀ´entropy solution to (23) with a germ given by (22).

Sketch of proof. Let ρ “ Bxu. We know from Proposition 2.9 that ρ is an entropy solution to the CL in
p0,8q ˆ pRzt0uq. It remains to check that the trace pρpt, 0´q, ρpt, 0`qq belongs to GĀ.

We first claim that the Rankine-Hugoniot equality fpρpt, 0´qq “ fpρpt, 0`qq “ ´Btupt, 0q holds a.e..
For any ξ P C8c pp0,`8qq and h ą 0 small, we have, after integrating the equation of u which is satisfied
a.e.

h´1

ˆ 8
0

ˆ h

0

ξptqfpρpt, xqq dxdt “ h´1

ˆ 8
0

ˆ h

0

ξ1ptqupt, xq dxdt.

By continuity of u, the right-hand side converges, as h Ñ 0`, to
´8

0
ξ1ptqupt, 0qdt. By the strong trace

property, the left-hand side converges to
´8

0
ξptqfpρpt, 0`qq dt as hÑ 0`. This implies that

ˆ 8
0

ξptqfpρpt, 0`qq dt “

ˆ 8
0

ξ1ptqupt, 0qdt “ ´

ˆ 8
0

ξptqBtupt, 0qdt.

In the same way, we have ˆ 8
0

ξptqfpρpt, 0´qq dt “

ˆ 8
0

ξ1ptqupt, 0qdt,

which completes the proof of the claim.
We also know by Proposition 3.8 that ´Btupt, 0q ď Ā, so that fpρpt, 0´qq “ fpρpt, 0`qq ď Ā a.e.. In

addition, in view of the existence of right- and left- derivatives of upt, ¨q at points pt, 0q where Btupt, 0q exists
[43], one can easily check that ρpt, 0˘q “ Bxupt, 0

˘q. It remains to check that pBxupt, 0
´q, Bxupt, 0

`qq P GĀ.
To prove the claim, we argue by contradiction, assuming that, for some t ą 0 at which Btupt, 0q exists

(and thus Bxupt, 0
´q and Bxupt, 0

`q exist as well),

fpρpt, 0´qq ă A, pρpt, 0´q, ρpt, 0`q “ pp`
Ā
, p´
Ā
q.

Let us fix ε ą 0 so small that λ :“ fpρpt, 0´qq ` ε ă Ā. As f is concave, we have p`λ ă Bxupt, 0
´q and

p´λ ą Bxupt, 0
`q. Let us define the map w : Rˆ RÑ R by

wps, xq “ upt, 0q `

"

p`λ x´ λs if x ď 0
p´λ x´ λs if x ě 0

Then w is a test function which is a supersolution of the HJ equation because,

fpp`λ q “ fpp´λ q “ λ “ ´Bsw

and using Ā P r0,max f s, we get

mintĀ, f`pp`λ q, f
´pp`λ qu “ mintĀ,max f,max fu “ Ā ě λ “ ´Bsw.
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Moreover, we have that upt, xq ď wp0, xq if |x| is small enough. Thus, by finite speed of propagation and
comparison, we have upt` h, 0q ď wph, 0q for h ą 0 small enough. Therefore

´fpρpt, 0´qq “ Btupt, 0q ď Bswp0, 0q “ ´λ “ ´fpρpt, 0
´qq ´ ε,

which is impossible. This proves that pρpt, 0´q, ρpt, 0`qq P GĀ.

3.4 From micro to macro

We now go back to discrete dynamic pXiqi“1,...,N defined in Subsection 3.1 (with 9XN “ maxV ) and
define the flow of measures ρN by (18). The following result is due to [30].

Theorem 3.14 (Micro-Macro derivation for 1:1 junctions). Under Assumption (16), there exists a flux
limiter Ā P r0,max f s such that, if condition (17) holds and if ρN p0q converges weakly to ρ0, then the
flow of measures pρN q converges weakly-* to the GĀ´entropic solution to (23).

The proof in [30] consists in transforming the discrete system into a (nonlocal) HJ equation, and then
use argument in homogenization of HJ equation [41] (here, construction of a local corrector) to pass to
the limit at the level of the flux-limited HJ equation. The conclusion then follows from Theorem 3.13 on
the relationship between GĀ´solutions of (23) and flux-limited viscosity solutions of HJ equation (26).

We sketch here a different approach, which will be useful in the case of different junctions (Section
4.1.2). It also relies on Theorem 3.13 but consists in building directly the flux-limitor.

Let us first mention as a starting point a kind of localization/comparison principle:

Proposition 3.15 (Discrete comparison principle, [20]). Let pX̃iqi“1,...,N be another solution to (15)

and assume that Xip0q ď X̃ip0q for any i P t1, . . . , Nu. Then there exists β ą 0 and C ą 0 depending on
W only such that, for any i P t1, . . . , Nu and any t ě 0,

Xiptq ď X̃iptq ` C2´pN´iqeβt.

The result is interesting, for large time intervals, when the number of vehicles is large as well. It is
then a mixture between a comparison principle and a finite speed of propagation property. In particular,
when there are infinitely many vehicles, we have a full comparison principle: if pXiqiPN and pX̃iqiPN are
two solutions of (15) with N “ 8, and if Xip0q ď X̃ip0q for any i P N, then Xiptq ď X̃iptq for any t ě 0
and any i P N.

The central argument of the proof of Theorem 3.14 consists in solving the problem in a particular
case. Let ē ą 0 be such that f0p1{ēq “ max f0. We consider the solution to

9Y iptq “ V pY i`1ptq ´ Y iptq, t, Y iptqq, t ě 0, i P Z, (30)

with initial condition
Y ip0q “ iē, @i P Z.

It is not difficult to check that the solution exists for all time and satisfies

Y i`1ptq ě Y iptq ` emin @i P Z. (31)

We introduce
ρNY ptq “ N´1

ÿ

iPZ
δN´1Y ipNtq

and
uNY pt, xq “ N´1

ÿ

ią0

1txąN´1Y ipNtqu ´N
´1

ÿ

iď0

1txďN´1Y ipNtqu

We note that Bxu
N
Y “ ρNY in the sense of distribution. Following arguments similar to the ones in the

proof of Theorem 2.10, it is not difficult to check that the family puNY q is equicontinuous.
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Proposition 3.16. There exists Ā P r0, Amaxs such that

uY pt, xq :“ lim
N
uNY pt, xq “ max

 

x{ē´ tfmax, p
`

Ā
x1txă0u ` p

´

Ā
x1txą0u ´ tĀ

(

,

locally uniformly in r0,8q ˆ R. In particular, the limit uY is a viscosity solution to the flux-limited HJ
equation (26).

The key point is that, in a neighborhood of x “ 0, the right-hand side equals p`
Ā
x1txă0u`p

´

Ā
x1txą0u´

tĀ, which is a self-similar viscosity solution to the flux limited HJ equation (26). Thus we will be able
to use the map uNY as a kind of corrector.

The proof of the proposition requires several steps. We consider the quantity

mptq “ maxtm P R, @i P Z, Y iptq ě iē`mu “ inf
iPZ

Y iptq ´ iē.

As the Y i are nondecreasing and uniformly Lipschitz continuous, mp¨q is nondecreasing and Lipschitz
continuous. Note that, if the dynamic was simply given by V , then we would have Y iptq “ iē ` tV pēq
and thus we would have mptq “ tV pēq. Because W ď V , one can check that Y iptq ď iē ` tV pēq for any
i. Thus mptq ď tV pēq. We claim that

Lemma 3.17. The limit N̄ :“ lim
tÑ8

Nptq

t
exists and belongs to r0, Amaxs.

Proof. Fix n, p P N. Then
Y ipnT q ě pi` rmpnT q{ēsqē @i P Z.

Let pZipsqqiPZ be the solution of (30) starting at Zip0q “ pi ` rmpnT q{ēsqē. By the periodicity of V in
time and the definition of mpsq, we have

Zippn` pqT q “ Y i`rmpnT q{ēsppT q ě pi` rmpnT q{ēsqē`mppT q @i P Z.

On the other hand, by discrete comparison (Proposition 3.15 with N “ 8), we have Y ipnT ` sq ě Zipsq
for any s. Hence

mppn` pqT q ě rmpnT q{ēsē`mppT q ě mpnT q `mppT q ´ 1{ē.

This shows that m̃pnq “ mpnT q ´ 1{ē satisfies the superadditive property:

m̃pn` pq ě m̃pnq ` m̃ppq.

By Fekete’s Lemma, we infer that the following limits exist:

lim
n

NpnT q

n
“ lim

n

m̃pnq

n
“ inf

n

m̃pnq

n
.

The map N being globally Lipschitz, the result follows.

The next step consists in showing that N̄ is roughly the decay rate of uNY pt, 0q:

Lemma 3.18. We have

lim
NÑ8

uNY pt, 0q “ ´
N̄

ē
t.

Sketch of proof. Note first that

uNY pt, 0q “ ´N
´1

ÿ

iď0

1t0ďN´1Y ipNtqu

By the definition of mptq, we have

Y iptq ě iē`mptq @i P Z.
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Hence
uNY pt, 0q ě ´N

´1
ÿ

iď0

1t0ąN´1piē`mpNtqqu ě ´N
´1ē´1pmpNtq ` 1q.

This implies that

lim inf
N

uNY pt, 0q ě ´t
N̄

ē
.

To obtain the lower bound, fix t ą 0. We show below in Lemma 3.19 that, at least under suitable
conditions, there exists i0 P Z such that Y i0pNtq “ i0ē`mpNtq and Y i0pNtq P r´M,M s. Note that

i0 ě ´ē
´1pM `mpNtqq.

Moroever, for i ě i0 `M{emin, we have by (31),

Y ipNtq ě Y i0pNtq `M ě 0,

so that, for some constant C ą 0,

uNY pt, 0q ď ´N
´1

ÿ

iď0

1tiěi0`Mδu ď ´N
´1ē´1pmpNtq ` Cq.

Letting N Ñ8, we obtain

lim sup
N

uNY pt, 0q ď ´
N̄

ē
t.

In practice, the conditions required by Lemma 3.19 below are not always met and one has to consider a
slightly different quantity than mptq to conclude (see the argument in [20]).

Lemma 3.19. Fix t ą 0 and assume that mptq ă V pēqt and that m1ptq exists and satisfies m1ptq ă V pēq.
Then there exists i0 P Z such that Y i0ptq P r´M,M s and mptq “ Y i0ptq ´ ēi0.

In practice, the assumption mptq ă V pēqt holds in the interesting situation where N̄ ă V pēq and t is
large. Then second condition, is then “often” satisfied. Note that ´i0 (which is positive for t large) can
be interpreted as the number of vehicles having crossed the junction on the time interval r0, ts.

Proof. By Proposition 3.15, one easily checks that

lim
|i|Ñ8

Y iptq ´ pēi` V pēqtq “ 0.

Thus, as mptq ă V pēqt, the infimum defining mptq is reached at some i0 P Z: mptq “ Y i0ptq ´ ēi0. This
implies that

Y i0`1ptq ´ ēpi0 ` 1q ě Y i0ptq ´ ēi0,

and thus
Y i0`1ptq ´ Y i0ptq ě ē.

Using the Envelope Theorem, the fact that V is nondecreasing in its first variable and the previous
inequality, we then have

m1ptq “ 9Y i0ptq “W pY i0`1ptq ´ Y i0ptq, Y i0ptqq ěW pē, Y i0ptqq.

On the other hand we have assumed that m1ptq ă V pēq, so that by assumption (16)-(3), we must have
Y i0ptq P r´M,M s.

Proof of Proposition 3.16. Let u be the uniform limit of the uN , up to a subsequence. Note that, by the
definition of Y ip0q, we have up0, xq “ x{ē. Following the same argument as in the proof of Theorem 2.10
we can show that u is a solution to the HJ equation in p0,8qˆ pRzt0uq. In addition, by Lemma 3.18, we
know that upt, 0q “ ´Āt for any t ě 0. Thus u is the unique viscosity solution to the boundary problem

$

&

%

Btu` fpBxuq “ 0 in p0,8q ˆ pRzt0uq
upt, 0q “ ´Āt in p0,8q
up0, xq “ x{ē in R
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As the solution to this equation is unique, we infer that the whole sequence puN q converge to this limit.
We finally check that u is given by

upt, xq “ max
 

x{ē´ tfmax, p
`

Ā
x1txă0u ` p

´

Ā
x1txą0u ´ tĀ

(

.

Indeed, let v “ vpt, xq denote the right-hand side of this equality. Note that the maps pt, xq Ñ x{ē´tfmax

and pt, xq Ñ p`
Ā
x1txă0u ` p´

Ā
x1txą0u ´ tĀ are both solutions to the HJ equation in p0,8q ˆ pR ˆ t0uq.

As the Hamiltonian f is concave, it is not difficult to check that the supremum of two viscosity solutions
is sill a viscosity solution. Thus v solves the HJ equation in p0,8q ˆ pR ˆ t0uq. On the other hand,
vp0, xq “ x{ē´ tfmax while vpt, 0q “ ´Ā. This proves that v “ u. To prove that v is a viscosity solution
to (26), we just need to check the condition at x “ 0, which is satisfied in the classical sense because:

Btvpt, 0q `mintĀ, f´pBxvpt, 0
´qq, f`pBxvpt, 0

`qqu “ ´Ā`mintĀ, f´pp`
Ā
q, f`pp´

Ā
qu “ ´Ā` Ā “ 0

since f´pp`
Ā
q “ f`pp´

Ā
q “ Ā.

To explain the role of the “corrector” built in Proposition 3.16, we now explain how to use it to prove
the supersolution property. The proof of the subsolution property can be obtained by similar (but more
technical) argument, using Proposition 3.10 in the place of Proposition 3.8.

Rough sketch of proof of Theorem 3.14: supersolution. Let Xi be the solution to (15) with initial condi-
tion satisfying (17). Let us define

uN pt, xq “ N´1
N
ÿ

i“1

1txąN´1XipNtqu

One can check, exactly as in the proof of Theorem 2.10, that uN is equicontinuous and converges, up to a
subsequence denoted in the same way, to some u where u solves the HJ equation in p0,8qˆpRzt0uq. Let
us prove that u is a supersolution at x “ 0: for this we need to check that Btu` Ā ě 0 a.e. (Proposition
3.8). By the Rankine-Hugoniot (see for instance the argument in the proof of Theorem ??), we have

Btupt, 0q “ ´fpBxupt, 0
´qq “ ´fpBxupt, 0

`qq a.e..

Suppose that pt̄, 0q is a point of “semi-differentiability” of u such that Btupt̄, 0q ă ´Ā (it is proved in [43]
that such a point exists a.e.). Let A :“ fpBxupt, 0

´qq “ fpBxupt, 0
`qq ą 0. Then

upt̄, xq ě upt̄, 0q ` p`Ax1xď0 ` p
´
Ax1xě0 ` |x|εpxq ě upt̄, 0q ` p`

Ā
x1xď0 ` p

´

Ā
x1xě0

in a neighborhood of x “ 0. Using Proposition 3.16, this implies that, for N large enough,

uN pt̄, xq ´ uNY pt̄, xq ě upt̄, 0q ` Āt̄` oN p1q

in a neighborhood of x “ 0. Using the local comparison argument in Proposition 3.15 (after unscaling),
we infer that, for h ą 0 small,

uN pt̄` h, 0q ´ uNY pt̄` h, 0q ě upt̄, 0q ` Āt` oN p1q.

Letting N Ñ8, we infer (again by Proposition 3.16) that

upt̄` h, 0q ` Āpt̄` hq ě upt̄, 0q ` Āt̄,

which is impossible since Btupt̄, 0q ă ´Ā by assumption.

4 Traffic flow on more complex junctions

The analysis of traffic flows on junctions involving more than two branches and the corresponding micro-
macro derivation is largely an open question and is a much more challenging than the 1:1 case. At a micro
level, it is easy to understand that the different priority rules introduce a huge variety of possible models.
In the few example which have been treated in details so far, the variety still holds at the continuous
level. We will present here models involving 3 half-lines: either a bifurcation—with a single entry line
and two exit lines (the 1:2 model), or the merging of two entry lines into a single one (the 2:1 model).
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4.1 A model of a bifurcation: approach by HJ

We concentrate here on a bifurcation: it is a network involving a single entry line and several exit lines.
To fix the ideas and for simplicity we discuss the case of two exit roads, say Road 1 and Road 2, but the
general case could be handled exactly in the same way. Our goal is to describe discrete and continuous
models in which a given and fixed proportion of the vehicles of the entry line goes into Road 1 (the other
entering Road 2). It turns out that the HJ formalism—and the notion of flux limiter—is adapted to this
setting. This part is largely borrowed from [19].

4.1.1 The HJ formulation of the continuous model

Let R0 “ p0,8q ˆ t0u be the outgoing branch, Rj “ p´8, 0q ˆ tju for j “ 1, 2 being the incoming ones.

The set R “
Ť2
j“0 RjYt0u is endowed with the topology of three half lines glued together at the origin 0.

We look for densities pρkqkPt0,1,2u defined on R, satisfying the usual conservation law in the interior of
each branch and such that, at the junction,

ρkpt, 0`q “ πkρ0pt, 0´q

where πk P p0, 1q is the fixed proportion of vehicle entering branch k (where k “ 1, 2). Note that
π1 ` π2 “ 1. It turns out that the germ

G :“ tpq0, q1, q2q P r0, Rs3, fpq0q “ fpq1q ` fpq2q, qk “ πkq0 for k “ 1, 2u

does not satisfy the desired dissipativity property (recall Lemma 3.6). No well-posedness theory is known
for this germ. It turns out that there is a good theory for the integrated form of the equation. Namely, let
us consider the system of HJ equations with continuous unknown pukqk“0,1,2. Here u0 is an antiderivative
of ρ0 but, for technical reasons, uk is an antiderivative of ρk{πk for k “ 1, 2. We assume that the uk are
continuous up to the junction: u0pt, 0´q “ u1pt, 0`q “ u2pt, 0`q, and satisfy

$

&

%

Btu
0 ` f0pBxu

kq “ 0 in p0,8q ˆ p´8, 0q
Btu

k ` fkpBxu
kq “ 0 in p0,8q ˆ p0,8q, k “ 1, 2

Btu` FĀpBxu
0pt, 0´q, Bxu

1pt, 0`q, Bxu
2pt, 0`qq “ 0 in p0,8q ˆ t0u

(32)

Above,

f0 “ f, fkppq “
1

πk
fpπkpq for k “ 1, 2,

and
FĀpp

0, p1, p2q “ mintĀ, f0,`pp0q, f1,´pp1q, f2,´pp2qu

for some flux limiter Ā P r0, A0s, where A0 “ mink maxp f
kppq. As in Section 3.3, for a given function g,

g´ (resp. g`) denotes the smallest nonincreasing (resp. nondecreasing) function above g.
To define the notion of viscosity solution for (32), we introduce the set of test function PC1pJq. It

is the set of maps φ “ pφkqk“0,1,2 which are C1 on p0,8q ˆ p´8, 0s for φ0 and on p0,8q ˆ r0,8q for
φk (k “ 1, 2), and such that φ0pt, 0´q “ φ1pt, 0`q “ φ2pt, 0`q. The notion of viscosity solution in this
context is exactly the same as in Definition 3.7 and the existence and uniqueness of a solution, given an
initial condition u0 “ pu

k
0q hold as in Theorem 3.12, following a comparison result similar to the one in

Theorem 3.11 (see [36]).

4.1.2 Micro to macro derivation

In the microscopic model, there are N vehicles. A vehicle evolves first on road 0 before entering either
road 1 or road 2. The road it eventualy enters is determined from the initial time and does not change
with time. Exactly as in Section 2.5.2, it can be interpreted as a “type” Zi associated with vehicle i:
Zi P t1, 2u equals 1 if vehicle i intends to enter road 1 and Zi “ 2 otherwise. We assume that the pZiq
are independent, with PrZi “ ks “ πk.

The dynamics of vehicle i is governed by its type, and the distance of the vehicle in front of it. In
contrast with the case of 1:1 junctions, the vehicle in front of car i might change in time (before and after
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the junction). We denote by i` 1 the label of the vehicle in front of car i before the junction, and by `i
the label of the vehicle in front of car i after the junction. Note that this later vehicle is the first one in
front of vehicle i and which is of the same type as i. Thus its label is determined from the initial time
and does not change in time. This yields to a dynamics of the form

9Xiptq “ VZi
pXi`1ptq ´Xiptq, X`iptq ´Xiptq, Xiptqq.

The map V : t1, 2u ˆ r0,8q2 ˆ R Ñ r0,8q is supposed to Lipschitz continuous. As in Section 3.1, it
is reasonable to assume that V depends only on Xi`1ptq ´ Xiptq far before the junction, and only on
X`iptq ´Xiptq far after the junction: namely we suppose that, for some M ą 0,

Vzpe
0, e1, xq “

"

V pe0q if x ď ´M,
V pe1q if x ěM.

The transition zone r´M,M s corresponds to a portion of space in which a vehicle has to take into
account not only the vehicle in front before the junction, but also the vehicle which will be in front after
the junction.

Let us consider
ρN,0pt, dxq “ N´1

ÿ

iPt1,...,Nu, XipNtqă0

δN´1XipNtq

and, for k “ 1, 2,
ρN,kpt, dxq “ N´1

ÿ

iPt1,...,Nu, XipNtqě0, Zi“k

δN´1XipNtq.

We have the following convergence result [20] (see also [31] for a deterministic model):

Theorem 4.1. Under suitable assumption on V , there exists a flux limiter Ā such that the following
holds: for any suitable the initial condition pρN,kp0qq converging weakly to densities ρ0 “ pρ

k
0q, the pρN,kq

defined above converge weakly to pρkq as N Ñ 8, with ρ0 “ Bxu
0 while ρk “ πkBxu

k for k “ 1, 2, where
u “ pukq is the solution to (32) for a suitable initial condition puk0q associated to ρ0.

The proof relies of several argument. As for the micro-macro derivation in the case of a 1:1 junction
in Section 3.4, the key idea to determine the flux limiter is to count the number Nptq of vehicles going
through the junction between 0 and t. However this quantity is now random and, as far as we know,
does not satisfy a superadditive property. To overcome this issue we show that its variance is controlled
and we infer from this that its expectation is superadditive. This kind of argument was first developed
in [3] in the framework of stochastic homogenization of HJ equations.

4.2 A model for the merging of two roads: approach by CL

Next we investigate the case of a 2:1 model, in which two entry roads merge into a single line. The model
will depend on a priority rule, formalized, at the level of the conservation law, by a germ. A micro-macro
derivation of such a rule is largely an open question (on this topic see [17]). For this reason, we follow
here [19] and present a passage from a mesoscopic model to a macroscopic one. In the mesoscopic model
the traffic flow is continuous, but the priority rule discrete: to fix the ideas, we discuss here the specific
case of a time-periodic traffic light. In this setting, as only one entry line is active at each time, we are
in the set-up of a 1:1 junction. After a time-space scaling, we end up with a macroscopic model, which
is homogeneous in time. It involves a germ at the junction which keeps track of the traffic light.

Let us fix a few notation and assumptions, both valid in the meso and the macro models. Let
R0 “ p0,8qˆ t0u be the outgoing branch, Rj “ p´8, 0qˆ tju for j “ 1, 2 being the incoming ones. The

set R “
Ť2
j“0 Rj Y t0u is endowed with the topology of three half lines glued together at the origin 0.

We make the following assumptions on the flux for some some R ą 0.

The flux f : r0, Rs Ñ r0,8q is of class C2, with f2 ă 0 on r0, Rs, fp0q “ fpRq “ 0. (33)

We set fmax :“ maxr0,Rs f and denote by f` the nondecreasing envelope of f and by f´ its nonincreasing
envelope.
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4.2.1 The mesoscopic model

We let I1 (respectively I2) denote the time sets on which the branch 1 (resp. the branch 2) is active in
the mesoscopic model. The sets I1 and I2 form a partition of R, each Ik, k “ 1, 2, being periodic and of
period 1 and locally the union of a finite number of intervals:

I1 Y I2 “ R, I1 X I2 “ H,
Ij is periodic of period 1 and consists locally in a finite number of intervals, j “ 1, 2.

(34)

A typical example is the case where I1 “ r0, τq ` Z (for some τ P p0, 1q) and I2 “ RzI1. In this case the
traffic light is green for road 1 on intervals of length τ and red on intervals of length 1´ τ .

Let ρj (j “ 0, 1, 2) be the density of vehicles. Then, in this mesoscopic model, ρ “ pρ0, ρ1, ρ2q solves

piq ρj P r0, Rs a.e. on p0,8q ˆRj , j “ 0, 1, 2
piiq Btρ̃

1 ` Bxpfpρ̃
1qq “ 0 on I1 ˆ R, ρ̃1 :“ ρ11p´8,0q ` ρ

01p´8,0q
Btρ̃

2 ` Bxpfpρ̃
2qq “ 0 on I1 ˆ R ρ̃2 :“ ρ21p´8,0q `R1p´8,0q

piiiq Btρ̃
2 ` Bxpfpρ̃

2qq “ 0 on I2 ˆ R, ρ̃2 :“ ρ21p´8,0q ` ρ
01p´8,0q

Btρ̃
1 ` Bxpfpρ̃

1qq “ 0 on I2 ˆ R ρ̃1 :“ ρ11p´8,0q `R1p´8,0q

(35)

In (ii), concerning the time intervals I1, the first equation says that the traffic is unperturbed on the
union R1YR2Yt0u for the density given by ρ̃1 :“ ρ11p´8,0q`ρ

01p´8,0q. On the other hand, the second
equation says that the traffic is stopped on the entry road R2 at the level of the junction, because it is
set to R and thus completely congested on the right of the junction. Equations (iii) describe the opposite
configuration on the time intervals I2. The existence and the uniqueness of a solution, given an initial
condition pρj0q, can be made by induction on each time interval. Note that the flow satisfies a Kato’s
inequality, because this is the case on each time interval.

In order to obtain a time-homogenous model, it is natural to scale the problem by looking at

ρεpt, xq “ pρε,0, ρε,1, ρε,2qpt, xq :“ ρpt{ε, x{εq,

where ε ą 0 is a small parameter and ρ “ pρ0, ρ1, ρ2q solves (35). The equation satisfied by the scaled
density is almost the same as the one satisfied by the original one, except that the period of the traffic
lights has been speeded up:

piq ρε,j P r0, Rs a.e. on p0,8q ˆRj , j “ 0, 1, 2
piiq Btρ̃

ε,1 ` Bxpfpρ̃
ε,1qq “ 0 on εI1 ˆ R, ρ̃ε,1 :“ ρε,11p´8,0q ` ρ

ε,01p´8,0q
Btρ̃

ε,2 ` Bxpfpρ̃
ε,2qq “ 0 on εI1 ˆ R ρ̃ε,2 :“ ρε,21p´8,0q `R1p´8,0q

piiiq Btρ̃
ε,2 ` Bxpfpρ̃

ε,2qq “ 0 on εI2 ˆ R, ρ̃ε,2 :“ ρε,21p´8,0q ` ρ
ε,01p´8,0q

Btρ̃
ε,1 ` Bxpfpρ̃

ε,1qq “ 0 on εI2 ˆ R ρ̃ε,1 :“ ρε,11p´8,0q `R1p´8,0q

(36)

Our aim is to understand the limit, as ε tends to 0, of ρε. We will see that this limit is the solution of a
scalar conservation law on R, with a germ condition at the junction.

4.2.2 The macroscopic problem: an approach by germ

In order to describe the limit problem, we follow the ideas of [2, 29] already introduced in Subsection 3.2.2.
We are interested in the solution pρkqkPt0,1,2u of a conservation law on the junction R. The evolution
depends on the flux f and on a germ G Ă r0,8q3:

piq ρj P r0, Rs a.e. on p0,8q ˆRj , j “ 0, 1, 2
piiq Btρ

j ` Bxpfpρ
jqq “ 0 on p0,8q ˆRj , j “ 0, 1, 2

piiiq pρ0pt, 0´q, ρ1pt, 0`q, ρ2pt, 0`qq P G for a.e. t P p0,8q.
(37)

Let us extend the notion of germs already introduced in Section 3.2.2. Recall that the pair (Kruz̆kov
entropy, entropy flux) is given, for p, p̄ P R, by

ηpp̄, pq “ |p´ p̄|, qpp̄, pq “ signpp´ p̄qpfppq ´ fpp̄qq.
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We define the box
Q :“ r0, Rs3 (38)

and the subset of Q satisfying Rankine-Hugoniot condition

QRH :“
 

P “ pp0, p1, p2q P Q, fpp0q “ fpp1q ` fpp2q
(

(39)

Let us introduce some terminology: For P “ pp0, p1, p2q, P̄ “ pp̄0, p̄1, p̄2q P Q, we define the dissipation
by

DpP̄ , P q :“
 

qpp̄1, p1q ` qpp̄2, p2q
(

´ qpp̄0, p0q “ IN´OUT

Consider a set G Ă Q. We say that G is a germ (for dissipation D) if

"

G Ă QRH (Rankine-Hugoniot)
DpP̄ , P q ě 0 for all P̄ , P P G (dissipation)

We also say that G is maximal (for the dissipation D relatively to the box Q) if for every P P Q, we
have

`

DpP̄ , P q ě 0 for all P̄ P G
˘

ùñ P P G.

Finally, we say that a set E Ă G generates G, if, for any U P Q,

´

DpU, Ūq ě 0 @Ū P E
¯

ùñ U P G.

By a solution to (37) we mean that ρ P L8pp0,8q ˆ R, r0, Rsq is an entropy solution to the scalar
conservation law in p0,8qˆ pRzt0uq and that its trace pρ0pt, 0`q, ρ1pt, 0´q, ρ2pt, 0´qq at x “ 0 belongs to
G for a.e. t ě 0. It is not difficult to check that ρ P L8pp0,8q ˆR, r0, Rsq is a solution to (37) if and
only if it satisfies the following entropy inequality (for some set E generating G):

2
ÿ

j“0

"ˆ 8
0

ˆ
Rj

ηpuj , ρjqBtφ
j ` qpuj , ρjqBxφ

j `

ˆ
Rj

ηpuj , ρ̄jqφjp0, xq

*

ě 0 (40)

for any u “ pujq P E and any continuous nonnegative test function φ : r0,8q ˆ R Ñ r0,8q with a
compact support and such that φj :“ φ|r0,`8qˆpRjYt0uq is C1 for any j “ 0, 1, 2. Note that (40) is just
Kato’s inequality between pρjq and the constant solution pujq.

It can be checked, exactly as in the proof of Theorem 3.5, that there is at most one solution to (37)
given an initial condition and that the flow is an L1´contraction. Existence of a solution is more subtle
and requires additional condition on the germ.

4.2.3 A meso-macro derivation

Theorem 4.2 (Homogenization of the 1:2 junction [19]). Under our standing assumptions, there exists
a maximal germ G Ă Q, such that the following holds true. Given an initial data ρ̄0 “ pρ̄i0q P L

8pRq
such that ρ̄i0 P r0, Rs a.e. for i “ 0, 1, 2, the solution ρε of (36) with initial condition ρ̄0 converges in
L1
locpr0,8q ˆRq to the unique entropy solution ρ to

piq ρj P r0, Rs a.e. on p0,8q ˆRj , j “ 0, 1, 2
piiq Btρ

j ` Bxpfpρ
jqq “ 0 on p0,8q ˆRj , j “ 0, 1, 2

piiiq pρ0pt, 0q, ρ1pt, 0q, ρ2pt, 0qq P G for a.e. t P p0,8q,
pivq ρp0, ¨q “ ρ̄0 on t0u ˆR,

(41)

Remark 4.3. The micro-macro derivation remains an open question. In [17] we derived a germ model
for a merging from a micro-model: it is however imperfect since the traffic light is supposed to be large
when the number of vehicles is large, which is not physical. This assumption, which makes the micro
model close to the mesoscopic regime, should be relaxed.
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It is possible to build the set G explicitly from the set I1: see [19]. For instance, when I1 “ r0, τq `Z
(where τ P p0, 1q), then, setting π1 “ τ and π2 “ 1´ τ ,

G :“

$

&

%

P “ pp0, p1, p2q P QRH ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď fppkq ď πk max f, k “ 1, 2

f´ppkq ě πkf´pp0q, k “ 1, 2

,

.

-

. (42)

The first condition in (42) says that the maximal flux fpp1q coming from branch R1 at the junction is
π1fmax (and symmetrically for the branch R2). The second condition expresses that—in a relaxed sense—
the flux fpp0q at the right-hand side of the junction can be decomposed into a portion fpp1q “ π1fpp0q

coming from branch R1 and fpp2q “ π2fpp0q coming from branch R2. The result of [19] is actually much
more general and allows for a time-periodic flux limiter at the mesoscopic level.

The proof the theorem relies on the existence of suitable set E Ă G generating G and the construction
of correctors. The notion of corrector is classical in homogenization. In our context, it reads:

Theorem 4.4 (Existence of correctors with prescribed values at infinity [19]). For any p “ pp0, p1, p2q P

E, there exists an entropy solution up “ pu
i
pq P L

8pR ˆ Rq of (35) which is 1-periodic in time and a
constant C ą 0 such that for all M ě C

}u0
p ´ p

0}L8pRˆp´8,´Mqq ` }u
i
p ´ p

i}L8pRˆpM,8qq ď CM´1, i “ 1, 2. (43)

Sketch of proof of Theorem 4.2 from Theorem 4.4. Note that, if up is a corrector, then the scaled function

uεppt, xq “ uppt{ε, x{εq solves (36) and strongly converges to
ř2
k“0 p

k1Rk . On the other hand, by Kato’s
inequality satisfied by the solutions of equation (36), we have

2
ÿ

j“0

"ˆ 8
0

ˆ
Rj

ηpuε,j , ρε,jqBtφ
j ` qpuε,j , ρε,jqBxφ

j `

ˆ
Rj

ηpuε,j , ρε,j0 qφ
jp0, xq

*

ě 0,

for any continuous nonnegative test function φ : r0,8q ˆR Ñ r0,8q with a compact support and such
that φj :“ φ|r0,`8qˆpRjYt0uq is C1 for any j “ 0, 1, 2.

As the ρε,j solve a scalar CL with a strictly convave flux function, they are bounded in BV far from
the origin and thus converge, up to a subsequence, in L1

loc to some functions ρj . So passing to the limit
(up to this subsequence) as εÑ 0 gives

2
ÿ

j“0

"ˆ 8
0

ˆ
Rj

ηppj , ρjqBtφ
j ` qppj , ρjqBxφ

j `

ˆ
Rj

ηppj , ρj0qφ
jp0, xq

*

ě 0.

This inequality, which holds for any p P E, is exactly the entropy inequality (40) which characterizes the
solution to (37). Thus any limit up to a subsequence of the compact sequence pρεq is equal to the solution
ρ of (37), which shows that the whole family ρε converges to ρ in L1

loc.

4.3 Open problems

There are many open problems in this area. I single out a few of them, mainly out of personal taste.

1. Perhaps the more important question is to derive a large class of admissible models of CL type
including at the same time the approach by germs and the approach by flux limiters of HJ equations.
Recall that the first one is L1´conservative while the second one is L8´contractive at the level of
the anti-derivative; they are not equivalent in general. The difficulty is that the class of admissible
conditions which have to be put at the junction is unclear. On see question, see the recent preprint
[44].

2. In the line of this course, a micro-macro derivation of the continuous models should guide the
building of these models.
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3. One of the reasons it is interesting to have models of traffic flow is of course the design of junctions
and the optimal control of the traffic: there are many works on the domain: see for instance the
monograph [11] and the references therein. However I am not aware of a micro-macro derivation of
these optimal control problems; it would also be interesting to explain how to use at a micro level
the optimal strategies given at the continuous level.

4. Traffic flow is just one of the many instances of micro-macro derivation. Similar—but much more
challenging—questions pop up in pedestrian flows for instance, with the main difference that the
problem is no longer one dimensional and that, in this setting, one might take into account the fact
that pedestrians anticipate the traffic. This question is closely related to mean field games...

References

[1] Y. Achdou, F. Camilli, A. Cutr̀ı, and N. Tchou, Hamilton-Jacobi equations constrained
on networks. Nonlinear Differential Equations and Applications NoDEA, 20(3) (2013), 413-445.

[2] B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L1-dissipative solvers for
scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011), 27-86.

[3] Armstrong, S., and Cardaliaguet, P. Stochastic homogenization of quasilinear Hamilton-
Jacobi equations and geometric motions. Journal of the European Mathematical Society, 20(4)
(2018), 797-864.

[4] Aw, A., and Rascle, M., Resurrection of “second order” models of traffic flow. SIAM journal
on applied mathematics, 60(3) (2000), 916-938.

[5] A. Aw, A. Klar, T. Materne, and M. Rascle, Derivation of continuum traffic flow models
from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), pp. 259–278.

[6] Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y. Dynamical model
of traffic congestion and numerical simulation. Physical review E, 51(2) (1995), 1035.

[7] Bardi, M., and Capuzzo Dolcetta, I. Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations (Vol. 12). Boston: Birkhäuser (1997).
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nonlocal generalized Aw-Rascle type model. SIAM Journal on Applied Mathematics, 80(4) (2020),
1841-1861.

[23] Colombo, R. M., and Goatin, P. A well posed conservation law with a variable unilateral
constraint. Journal of Differential Equations, 234(2) (2007), 654-675.

[24] Crandall, M. G., Ishii, H., and Lions, P. L. (1992). User’s guide to viscosity solutions of
second order partial differential equations. Bulletin of the American mathematical society, 27(1),
1-67.

[25] M. G. Crandall, and L. Tartar, Some relations between nonexpansive and order preserving
mappings. Proceedings of the American Mathematical Society, 78(3) (1980), 385-390.

[26] C.M. Dafermos, Hyperbolic conservation laws in continuum physics (Vol. 3) (2005).
Berlin: Springer.

[27] M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws
from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015),
pp. 831–871.

[28] Di Francesco, M., Fagioli, S., and Rosini, M. D. Many particle approximation of the Aw-
Rascle-Zhang second order model for vehicular traffic. Math. Biosci. Eng. 14(1) (2017), 127-141.

[29] U.S. Fjordholm, M. Musch and N.H. Risebro, Well-posedness and convergence of a finite
volume method for conservation laws on networks. SIAM J. Numer. Anal. 60 (2) (2022), 606-630.

[30] N. Forcadel, W. Salazar, and M. Zaydan, Specified homogenization of a discrete traffic
model leading to an effective junction condition. Communications on Pure and Applied Analysis,
17(5) (2018), 2173-2206.

[31] N. Forcadel, and W. Salazar, Homogenization of a discrete model for a bifurcation and
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