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The MFG problem

We are interested in the mean field game problem

1 .
—Ow+ 5105 = (m(t,x)°  in (0,T) xR,

(MFG) am — div(moxu) =0 in (0, T) x R,
m(0, x) = mo(x) in R.
supplemented with either a terminal cost:
(MFG — terminal) u(T,x)=g(m(T, x))
or a constraint on m(T):
(MFG — planning) m(T,x) = mr(x)

where
@ mg and my are compactly supported densities on R,
@ ¢9>0andg(r)=crrf.
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Interpretation of the MFG problem

System

—Opu + %\SXU\Z =(m(t,x))? in(0,T) xR,
Orm — div(moxu) =0 in(0,7) xR,
m(0, x) = mg(x), u(T,x)=g(m(T, x)) inR.

(MFG — terminal)

describes a game with infinitely many players in which
@ atypical small player starting from x at time ¢t minimizes the quantity

b= e [ 1 ¢ d
ut = inf [ 219+ (m(s. ()" ds

@ m(t,-) is the distribution of the players at time t when they play optimally.
(Lasry-Lions ('07), Huang-Caines-Malhamé ('07)).
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Basic remarks

@ Link with optimal transport: If (u, m) solves

‘ —du + 1|6Xu\2 =(m(t,x))’ in(0,T) xR,
(MFG — planning) am —div(mdxu) =0 in (0,T) x R,
m(0, x) = mo(x), m(T,x)=m(T,x) in R.

then (m, —9dxu) is a minimizer of the optimal transport problem

0+1
|nf / / —|| m
2 9+

where the infimum is taken over (m, ) such that

6tm+ d]V(mOé) = 07 m(O) = Mg, m(T) = mr.

@ Hamiltonian system: (MFG) corresponds formally to the Hamiltonian system associated

with the Hamiltonian ;
1
H(u,m):/ /fm(axu)z—
0o Jr2
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A few references

From the MFG system:

|
(MFG) O+ 3 10xuf = m®
oym — div(moxu) = 0.

@ Lions’ a priori estimates:

-meL®, ue Whe,
- (u, m) smooth in {m > 0}.

@ Weak formulation: Existence/uniqueness of a weak solution by C. ('15), C.-Graber ('15),
C.-Graber-Porretta-Tonon ('15), Munoz ('22).

@ Regularization L' — L°°/displacement convexity: Lavenant-Santambrogio ('18),
Gomes-Seneci ('18), Porretta ('23).

@ Classical solutions: with periodic boundary conditions,
- for entropic coupling: Munoz ('22), Porretta ('23),
- for positive initial densities: Mimikos-Munoz ('23),

— Main novelty here: problems in which {m > 0} is not the whole space.
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Self-similar solution

Recall the MFG system:

1
(MFG) —du + E\BXUF =m’
Orm — div(moyu) = 0.

Proposition
There exists a self-similar solution to (MFG) given by

_ 1/6
m(t,x) =t~ *¢(t~“x), where  ¢(x) = (Q) (R2 = x2)1/9 , = Zzﬂ’

2
u(t, x) = —a’th —cte' in{m>0} (foro+#£2),

where C = R? "‘( 2) and R is such that [, m(t, x)dx = 1.
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Remarks on the self-similar solution

Recall that m(t, x) = t=*¢(t~“x) and u(t, x) = fag—zt — Ct?>—1 is a a self similar solution
where 1/6
(a1l -a) 2 o\ 1/6 2
o= (M50) (B ) = g e,
Remarks:

@ m(t,-) has a compact support in [—Rt*, Rt*], is Holder continuous (but not globally
smooth). Moreover m? is Lipschitz.

@ (behavior at t = 0) lim;_,o+ m(t,-) = do.

@ Optimal trajectories solve ¥ = —0x(t,v(t)) = ay(t)/t. Hence v(t) = ct*, t > 0,
ce[-R, Al

@ v can be extended into a C' function in the whole space (but not C?).
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Assumptions

@ my and mr are smooth in their support,
@ with {my > 0} = (ag, bp) and {mr > 0} = (ar, br),
@ (Compatibility) For some ag > 0,
Ciodist(x, {ag, bp})*0 < my(x) < Codist(x, {ap, bp})*°
and

A dist(x, {ar, br})* < mr(x) < Crdist(x, (ar, br})".
.

@ For (MFG — terminal), the terminal cost is g(r) = crr?.
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Main results

Theorem
Let (u, m) be the solution to (MFG-terminal), or to (MFG-planning).
@ (Regularity) There exists v > 0 such that

me CV([0, TI x R)n C2({m>0}), ue C/2([0, T x R) N C2F ({m > 0})
@ (Bounded support) Moreover there exist two functions v, < yg € W'-°°(0, T), such that
{m>0} ={(x,t) e R x [0, T] : () < x < ya(1)}.
@ (Convexity of the support) If we assume further the concavity condition

(md)xx < 0in {x € (ao, bo) : dist(x, {ao, bo}) < &} for some & > 0,

then v, v € W2°°(0, T), and there exists K > 0 such that, for a.e. t € [0, T],

1
<At <K, and — K < Fa(f) < — .

x| =
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Sketch of proof (1): basic a priori estimates

@ (Lions’ key remark) Let (u, m) be a classical solution to (MFG). The map u satisfies the
quasilinear elliptic equation

—Up + 2Uxlyr — (U2 + mf'(M))uxx =0 inR x (0, T)
with f(m) = m®, m = f~1(—u; + u2/2). This yields
Imllo < 00, [[OxU]loc < oo
@ (Displacement convexity) If in addition h: (0,c0) — R is twice differentiable, then

d2

o /T h(m) = /T mh (m)(mud, + F (m)nE).

(Gomes-Seneci ('18), Mimikos-Munoz ('23), Porretta ('23))

@ (Continuity of u) The map v = f(m) satisfies an elliptic equation with no zero—order terms,
with |D(; x) v| belongs to Lfoc. Hence v = f(m) has a modulus of continuity (Lebesgue
argument in dim. 2).
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Sketch of proof (2): characteristic flow
@ We consider the flow of optimal trajectories

A(t, x) = —oxu(t,v(t,x)) t>0
¥(0,x) = x

where x € (ap, bp) is in the support of mg.
@ Note that m(t) = ~(t, -)tmo.

@ We derive from this the mass preservation equality:

mp(X)

) = S x)

@ Key remark: Taking the derivative in t and using the equation for u yields that v solves in
(ag, bg) x (0, T) the elliptic equation

9mg Yxx = (mg)x
(VX)ZW (VX)HO

Yit +
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Sketch of proof (3): characteristic flow (continued)

@ Recall the key remark: ~ is a solution in (ap, by) x (0, T) to the elliptic equation

Gmg N (mg )x
XX — .
(7x)3+o (yx)1+¢

Yt +

@ By barrier argument, we get the bounds
Cl<w(tx)<C.
@ From uniform elliptic regularity we deduce that
7 € W ((a0, bo) x (0, T)) N Cipe (@0, bo) x [0, T]),

with ’YL(t) = ’Y(aOv t)7 ’YH(I) = ’Y(b()? t)

@ As m(t,-) = ~(t,-)dmo, we infer the interior regularity of m.
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Sketch of proof (4): regularity of (u, m) in the whole space

@ The C” regularity of m
comes from an intrinsic scaling argument & la Di Benedetto on v(t, x) = f(m(t,y(t, x))

(Harnack inequality, intrinsic Caccioppoli inequality, De Giorgi Lemma, reduction of
oscillation in intrinsic rectangles)

@ (C'8/2 regularity of u.
- the maps u and —u(T — t, ) satisfy a HJ eq. with convex Hamiltonian and Holder RHS,
- yields to semi-concavity of u and —u (with a nonlinear modulus)
- and thus to a C":#/2 regularity.
(as in Cannarsa-Soner ('89))
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The MFG-planning problem

We are now interested in the mean field game problem with a singular initial condition
1
—8u + §\8Xu|2 =(m(t,x))? in(0,T) xR,
(MFG — planning) am —div(mdyu) =0 in (0, T) x R,
m(0, dx) = o (dx), m(T,x) = m7(x) in R.
where my is a smooth density, supported in [ar, br] and satisfying the compatibility condition

Cc~'dist(x, {ar, br})'/? < my(x) < Cdist(x, {ar, br})"/?.
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Back to the self-similar solution

0

]
(MFG) —Ou + §\8Xu|2 =m
oym — div(moxu) = 0.

Proposition

There exists a self-similar solution to (MFG) given by

‘ o

m(t, x) = t~%¢(t~%x), where  ¢(x) = (@)1/9 (R2 = x2)1/6 , o=

2 1—
u(tx) = —a =D past im0y (ore £2),
2t 2a — 1
where Ris such that [, m(t, x)dx = 1. It satisfies

lim m(t,-) = d.
i, (%) = o

Remark: Note that u(t,-) blows upif2a —1 <0< 6 > 2.
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Main result

1
—Ou+ E‘BXUF = (m(t, x))? in(0,T) xR,

(MFG — planning) 9m —div(mdxu) =0 in (0, T) x R,

m(0, dx) = §p(dx), m(T,x) = mr(x) in R.

Theorem
@ (Existence) There exists a solution (u, m) to (MFG — planning) with u continuous in
(0,T) x Rand m € L2((0, T] x R) N C°([0, T], Pz), (u, m) smooth in {m > 0},

loc

@ (Behavior at t = 0) which in addition is such that t*m(t, t>-) converges locally uniformly in
(—R, R) to the self-similar profile ¢ as t — 0.

@ (Uniquness) If 6 € (0, 2), the solution to (MFG — planning) is unique.

Remarks:
@ Munoz ('24) studies the convergence to the self similar solution as T — co.
@ When my = my = §p and 6 = 1, Lions-Souganidis ('24) gives an explicit formula for the
unique solution and show that it is the limit of a viscous approximation.
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Construction of the solution
@ Let (u®, m*) be the solution to
—OUf + %\8Xu5\2 =(m*(t,x))? in(0,T) xR,
om® —div(m®oxu®) =0  in(0,T) xR,
u(0,x) = my(x) == “Pp(e”*x), m* (T, x) = my(x) in R.

By the previous analysis we know that (u¢, m*®) exists, is unique and is smooth in
{m® > 0}.

@ Let~* = (¢, x) be the flow of optimal solutions, for x € Spt(mg) = [-Re>, Re*]. Set
E(ty)=~°(te%y) ye[-RA]L
Then me(t) = 44(t, -)i¢ and ¢ solves

040 0 ,
g + (:/;M gy = (%3{1 in (0, T) x (—R, R).
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Construction of the solution (continued)

Lemma

3

Cc'<4 <C, forsome C > 1independent of .

Sketch of proof of the lemma
@ (Friendly giant) There exists k large such that, for any § > 0 small

w(t,y) = k(t+e+ 8¢~ B (y))"
is a super-solution to (). This gives the upper-bound as § — 0.

@ (bound below) Barrier argument on v (t,y) = (m®)0(t, 55 (t,y)) = (af(gri(ﬁ)@
5,
Consequences:
@ Uniform bounds for 5°: |3¢(t, y)| < C(t + ¢€)“,
@ As 4¢ solves the elliptic equation
6¢° (6%)y

) 4+ T 55, = G in (0, T) x (—R, R).

we obtain the uniform smoothness of 5°,
@ Uniform bounds: [|m#(f)]les < C(t+ )~ and / X2me (1, x)ax < C(t + £)2°.
R
@ — Existence of a solution to (MFG-planning): (u, m,#) = lim._,g(u®, m*,5%).
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Construction of the solution: behavior at t = 0

@ Following Munoz ('24), we change variables: for t = €7, x = t%n, let
_ _ 1-2a [SF- TN _ jax
p(rm) = 17m(t x), w(r,n) = 0720t x) + 07, 5(7,y) = 175(ty).

@ Equations for (w, p,%): (w, u) solves the MFG system

—w, + %|W,,|2 =u’+ Mﬁ +@a—1w  in(—o0,In(T)) xR
pr — (uwy)y =0
while 4 solves the elliptic equation
06° (¢%)y

ala— 1)+ (2a— 1)y + -+ + in (—o0,In(T)) x (—Ra, Ra)-

G2 ()
Note that u(7) = 4(t, -)i¢.

@ Energy estimates yield lim 4(r,y) =y, whichimplies lim pu(7) = ¢.
T——00 T—>—00
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Conclusion and open problems

Summary
@ We have proved existence and regularity of the solution to the MFG system

(MFG — planning) am — div(maxu) =0 in (0,T) x R,

m(0~ dX) = mo(dX), m(T7 X) = mT(X)
when mg has a compact support.
@ Link with the self-similar solution when my is a Dirac mass.

Open problems

@ For general initial conditions:

> Smoothness of the free boundary
> multi-dimensional case

@ For the singular initial condition: uniqueness of the solution when 6 > 2.
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Thank you!
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