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The classical result of Hale and Raugel in thin domains studies the
asymptotic behaviour, as ε goes to zero, of uε, solution of{

−∆uε + uε = f (x , y) in Ωε

∂νεuε = 0 on ∂Ωε

where Ωε = {(x , y) ∈ IRN × IR : x ∈ Ω, 0 < y < εg(x)}, for some

g such that 0 < inf
Ω

g ≤ sup
Ω

g <∞.
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Hale and Raugel (1989) have proved:

H-R

If g ∈ C 3(Ω) then uε converges to uo solution of{
−(∆uo + Dg ·Duo

g ) + uo = f (x , 0) in Ω

∂νu0 = 0 on ∂Ω.

This result has been extended in a wide variety of related problems
all in a variational setting:

Arrieta, PereiraHomogenization in a thin domain with an
oscillatory boundary J. Math. Pure Appl (2011)

Arrieta, Nogueira, Pereira.... oscillatory boundaries
Comput. Math. Appl. (2019)

Arrieta, Villanueva-Pesqueira..... doubly weak oscillatory
boundary, Preprint 2024

Arrieta, Nakasato, Villanueva-PesqueiraHomogenization in
3D thin domains .... Preprint 2024

Isabeau Birindelli Thin domains



−∆uε + uε = f (x , y)→ −(∆uo +
Dg · Duo

g
) + uo = f (x , 0)

Where does the ”new term” come from? If we make the change of
variables X = x , and Y = yεg(x) i.e. Ωε becomes the flat
cylindrical set Q = Ω× (0, 1) then the equation becomes{

− 1
g div(BεDvε) + vε = f in Q

∂νvε = 0 on ∂Q

with

BεDvε =

[
gDv − yvyDg

−yDg · Dv +
vy
ε2g

(1 + ε2|Dg |2y)

]
.
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So using the weak solution formulation:∫
Q

(
1

g
BεDvε·Dϕ−Bε

Dvε · Dg
g2

ϕ)dxdy+

∫
Q
vεϕdxdy =

∫
Q
f (x , εg(x)y)ϕdxdy .

By a priori bounds, ∂yvε → 0 and hence the limit equation
becomes∫

Ω
(Dvo · Dϕ−

Dvo · Dg
g

ϕ)dx +

∫
Ω
voϕdx =

∫
Ω
f (x , 0)ϕdx .

But if the equation is not variational, what happens? how do we
recover the limit equation. Use L. C. Evans test function approach.
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Heuristic

Where does the term come from without integration by part?
Recall that for vε(x , y) := uε(x , εg(x)y):

−tr(D2uε) + uε = f becomes − tr(B̃εD
2vε) + vε = f .

Using standard a priori estimate, we can suppose that

∂yyvε ≤ Cε2.

So we may use the following ansatz:

vε(x , y) = w(x) + ε2k(x)
y2

2
+ o(ε2).

Substituting the ansatz in the equation, we let, formally ε go to
zero, after a tedious but simple computation it is easy to see that
we obtain

−tr(

(
D2w(x) 0

0 k(x)
g2(x)

)
) + w = f .
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We still don’t know what is k(x)! Using the ansatz, in the
Neumann condition on the ”top” boundary, gives

Dg(x) · [Dw(x) + ε2Dk(x)
1

2
] =

k(x)

g(x)
[1 + ε2Dg(x)]

Passing to the limit we find

k(x) = g(x)Dg(x) · Dw(x) i.e.
k(x)

g2
=

Dg(x) · Dw(x)

g

i.e. the limit equation is indeed. −tr
((

D2w 0
0 Dg · Dw/g

))
+ w = f (x , 0) in Ω,

∂w
∂ν = 0 on ∂Ω.
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Oblique boundary condition-BBI. The domain Ωε

In the work I am presenting we consider, a larger class of domains,
more general boundary conditions and a much wider class of
operators.

For ε small, Ωε = {(x , y) ∈ Ω× IR : εg−(x) < y < εg+(x)},
Ω ⊂ IRN . We denote by

∂TΩε the top boundary i.e. y = εg+(x),

∂BΩε the bottom of the domain i.e. y = εg−

∂LΩε the lateral boundary i.e. ∂Ω× [εg−, εg+].

We suppose that g± ∈ C 1(Ω) and g− < g+.
Because of the corners, in the framework of viscosity solutions, we
will need to treat with special care the boundary.
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Oblique boundary condition-BBI. The operator.

We treat fully nonlinear equations in thin domains i.e.

F (D2u,Du, u, (x , y)) = 0 in Ωε

where F : S(N + 1)× IRN+1 × IR×Ωε → IR is a proper functional
in the sense of the User’s guide

(H2)

{
F ∈ C (S(N + 1)× IRN+1 × IR× Ωε, IR),

F (X , p, r , (x , y)) ≤ F (Y , p, s, (x , y)) for r ≤ s, and Y ≤ X .

Furthermore, we strengthen the monotonicity condition on F in
the above as follows.

(H3) There exists α > 0 such that

α(r − s) ≤ F (X , p, r , (x , y))− F (X , p, s, (x , y))

for r ≥ s and (X , p, (x , y)) ∈ S(N + 1)× RN+1 × Ωε.

We shall call these operators ”proper”.
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The boundary condition
Ωε = {(x , y) ∈ Ω× IR : εg−(x) < y < εg+(x)}

In general we can treat operators that are degenerate elliptic or non
linear, but for clarity sake, in this talk, I will begin by presenting
the results for F (D2u, u) = −∆u + u i.e. we consider problem{

−∆u + u = f in Ωε

γ · Du = β on ∂Ωε

Where the boundary condition will be meant in the viscosity sense
and will be written:

γ+ · Duε = β+ on ∂TΩε and γ− · Duε = β− on ∂BΩε,

γL · Duε = βL on ∂LΩε.
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Oblique boundary condition

Concerning conditions

γ+ · Duε = β+ on ∂TΩε and γ− · Duε = β− on ∂BΩε,

we require that γ± · νε > 0. Hence if we write

γ± = (γ±1 , γ
±
2 ) with γ1(x , y)± ∈ IRN and γ2(x , y)± ∈ IR

Then without loss of generality, since ±γ±2 > 0, we can choose
γ±2 = ±1.

γ+
1 ·Dxu

ε+uεy = β+ on ∂TΩε and γ−1 ·Dxu
ε−uεy = β− on ∂BΩε,
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We assume that for some k± ∈ C (Ω, IRN) and l± ∈ C (Ω, IR),{
γ±1 (x , y) = γ±1 (x , 0) + k±(x)y + o(|y |)
β±(x , y) = β±(x , 0) + l±(x)y + o(|y |),

as y → 0, where o(|y |)/|y | → 0 uniformly on Ω as y → 0.
A crucial assumption on γ± and β± for x ∈ Ω

β+(x , 0) = −β−(x , 0) := βo(x) and γ+
1 (x , 0) = −γ−1 (x , 0) := γo(x).

Isabeau Birindelli Thin domains



Under the above conditions on the boundary

Theorem (I.B., A. Briani, H. Ishii)

Let uε be a viscosity solution to −∆uε + uε = f in Ωε with
boundary conditions γ · Duε = β as in (17) for ε ∈ (0, ε0]. Then,
uε converges to u0 a solution in Ω of

−∆u − D2u γo(x) · γo(x)− b(x) · Du − c(x)u + u = f (x , 0).

Satisfying γL(x , 0) · u = βL(x , 0) on ∂Ω. Furthermore

lim
ε→0+

max
(x ,y)∈Ωε

|uε(x , y)− u0(x)| = 0.

The values of b(x) and c(x) will be written in the next slide.
For general operators F , for which we require only to be proper,
the convergence may not be uniform.
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Precisely

b(x) = γo(Dγo)T − 1

g+ − g−

(
g+k+ + g−k−

)
, (1)

c(x) = −γo · Dβo +
1

g+ − g−

(
g+l+ + g−l−

)
. (2)

Recall that γ± = (γ±1 ,±1),{
γ±1 (x , y) = ±γo(x) + k±(x)y + o(|y |)
β±(x , y) = ±βo(x) + l±(x)y + o(|y |),
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In the general case, if we consider the problem (Pε)

F (D2uε,Duε, uε, (x , y)) = 0 in Ωε, γ · Duε = β on ∂Ωε,

and we call Sε the set of viscosity solutions of this problem.
The limit equation will be defined through
G : S(N)× IRN × IR× Ω→ IR by

G (D2u,Du, u, x) = F (A + B + C , (Du, βo − γo · Du), u, (x , 0)),

where

A =

(
D2u −D2uγo(x)T

−γo(x)D2u γo(x)D2u γo(x)T

)
,

B =

(
0 −(DuDγo(x))T

−DuDγo(x) b(x) · Du

)
,

C =

(
0 Dβo(x)T

Dβo(x) c(x)

)
.

So we call (Po), the problem

G (D2u,Du, u, x) = 0 in Ω, γL · Du = βL(x , 0) on ∂Ω.
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Theorem (I.B., A. Briani, H. Ishii)

Assume that F is proper, that Ωε, g
±, γ and β satisfy the

conditions described above. Let Sε be the set of viscosity solutions
to the problem (Pε) If we define the half relaxed limits u± by

u+(x) = lim
r→0+

sup
u∈Sε
{u(ξ, η) : (ξ, η) ∈ Ωε, 0 < ε < r , |ξ − x | < r},

u−(x) = lim
r→0+

inf
u∈Sε
{u(ξ, η) : (ξ, η) ∈ Ωε, 0 < ε < r , |ξ − x | < r},

which are bounded functions on Ω. The functions u+ and u− are a
viscosity sub and super solutions to problem (Po) , respectively.

Corollary (I.B., A. Briani, H. Ishii)

If (Po) satisfies the comparison principle, u+ = u− = uo and the
convergence of uε to uo is uniform.
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What happens if the crucial hypothesis is not satisfied

The crucial assumption on γ± and β± for x ∈ Ω

β+(x , 0) = −β−(x , 0) := βo(x) and γ+
1 (x , 0) = −γ−1 (x , 0) := γo(x).

We consider the very simple problem:{
−uyy + u = 1 in (0, 1)× (0, ε),
uy (x , ε) = 1 , −uy (x , 0) = 0 , ux(0, y) = 0, ux(1, y) = 0

for which the hypotheses on β+ and β− are not satisfied. The
solution is given by

uε(x , y) =
1

eε − e−ε
(
ey + e−y

)
+ 1,

which is not bounded as ε goes to zero.
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Going back to the result of Hale and Raugel i.e. when the
”oblique” condition is just the Neumann boundary condition

−∆u + u = f in ΩHR
ε and

∂uε

∂νε
= 0 on ∂ΩHR

ε ,

where ΩHR
ε = {(x , y) ∈ IRN × IR : x ∈ Ω, 0 < y < εg(x)}, and

νε denotes the outward (unit) normal to ΩHR
ε .

Hence with g− = 0, γo = 0 and k+(x) = Dg(x)
g(x) :

the limit equation will be: −tr
(
D2w 0

0 Dg · Dw/g

)
+ w = f (x , 0) in Ω,

∂w
∂ν = 0 on ∂Ω.

Even in the case of the Laplacian the result is stronger then Hale
and Raugel, because they require g to be C 3
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Examples in the Neumann case

We give two very simple examples in the degenerate case with
ΩHR
ε = {(x , y) ∈ IRN × IR : x ∈ Ω, 0 < y < εg(x)}.

Let uε be the solution of

−∂2
yy (uε) + uε = f (x , y) in ΩHR

ε , ∂νεuε = 0 on ∂ΩHR
ε .

Then, uε converges to uo solution of a first order equation
precisely:

−Dg · Duo
g

+ uo = f (x , 0) in Ω, ∂νuo = 0 on ∂Ω.

Instead, if uε is the solution of

−∂2
x1x1

(uε) + uε = f (x , y) in ΩHR
ε , ∂νεuε = 0 on ∂ΩHR

ε

it will converge to uo solution of

−(uo)x1x1 + uo = f (x , 0) in Ω, ∂νuo = 0 on ∂Ω.
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Pucci operator: Uniformly elliptic but fully nonlinear.
Let 0 < λ ≤ Λ:

−M+
λ,Λuε + uε = f (x , y) in ΩHR

ε and
∂uε

∂νε
= 0 on ∂ΩHR

ε ,

where

M+
λ,Λ(D2u) := sup

λI≤A≤ΛI
(trA(D2u)) := λ

∑
ei≤0

ei + Λ
∑
ei≥0

ei

where ei are the eigenvalues of D2u.
In this case the limit equation becomes:

−M+
λ,Λ(D2w(x)) −Λ

(
Dg(x)·Dw(x)

g(x)

)+
+ λ

(
Dg(x)·Dw(x)

g(x)

)−
+

+w(x) = f (x , 0).
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Heuristic 2: For the oblique condition γ · ∇u = β

Intrinsic approach, à la Evans, is to consider the development:

uε(x , y) = u0(x) + εu1(x , y/ε) + ε2u2(x , y/ε) + · · · ,

so that D2uε =

(
D2
xu

0 (Dxu
1
y )T

Dxu
1
y ε−1u1

yy + u2
yy

)
+ o(1),

Duε = (Dxu
0, u1

y ) + o(1), uε = u0(x) + o(1).

Hence a natural ansatz here, to obtain a PDE for u0 = limε→0+ uε,
is to impose that

u1
yy (x , y) = 0 for x ∈ Ω, g−(x) < y < g+(x).

To achieve this, we assume that there is a function v : Ω→ IR
such that

u1(x , y) = v(x)y for y ∈ IR.
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Using now the development of the boundary conditions:{
γ±1 (x , y) = γ±1 (x , 0) + k±(x)y + o|y |)
β±(x , y) = β±(x , 0) + l±(x)y + o(|y |).

From the ansatz we obtain, by imposing that the zero order term
in the expansion in ε of the boundary condition is zero:

0 = γ±1 (x , 0) · Du0(x)± v(x)− β±(x , 0),

It yields:

v(x) = β+(x , 0)− γ+
1 · Du

0(x) = −β−(x , 0) + γ−1 · Du
0(x).

This is well defined if condition

β+(x , 0) = −β−(x , 0) := βo(x) and γ+
1 (x , 0) = −γ−1 (x , 0) := γo(x).

holds, and it determines the value for v as

v(x) := βo − γo · Du0(x),
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uε(x , y) = u0(x) + εu1(x , y/ε) + ε2u2(x , y/ε) + · · · ,

The value of u1(x , y) = (βo − γo · Du0(x))y has been found just
by considering null the zero order term in the expansion in ε of the
boundary condition.
Similarly, in order to determine u2 in terms of uo ..etc..we need to
impose that the first order term in the expansion in ε of the
boundary condition is zero. And we obtain:

u2(x , y) =
1

2
(y − g−(x))2w+(x) +

1

2
(y − g+(x))2w−(x)

where

w±(x) =
g±

(g+ − g−)
(l±(x)− k±(x) · Du0(x)∓ γo · Dv),
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With the knowledge of u1 and u2, we are now in a position to
guess the limit equation since D2uε =

(
D2
xu

0 (Dxu
1
y )T

Dxu
1
y ε−1u1

yy + u2
yy

)
+ o(1),

Duε = (Dxu
0, u1

y ) + o(1), uε = u0(x) + o(1).

Of course now that we have the Ansatz

uε(x , y) = u0(x) + εu1(x , y/ε) + ε2u2(x , y/ε) + · · · ,

with u1(x , y) = (βo − γo · Du0(x))y and
u2(x , y) = 1

2 (y − g−(x))2w+(x) + 1
2 (y − g+(x))2w−(x). The

Evans test function approach consist, in a very simplified sense, to
construct sub and super solutions to the equation at ε > 0, by
replacing, in the ansatz, uo by the test functions of the limit
equation. And then proceed.....
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The presence of corners with oblique boundary conditions require
some attention. Let us give the definition of viscosity solution for
problem:

F (D2u,Du, u, (x , y)) = 0 in Ωε

satisfying condition

γ · Du = β on ∂Ωε.

Intending

γ+ · Duε = β+ on ∂TΩε and γ− · Duε = β− on ∂BΩε,

γL · Duε = βL on ∂LΩε.

We suppose that
γ± ∈ C (Ω× [−1, 1], IRN+1), γL ∈ C (∂Ω× [−1, 1], IRN+1) be such
that the right structural conditions are satisfied.
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Definition of Viscosity Solutions

A bounded function u is a viscosity subsolution if u? its upper
continuous envelope satisfies: whenever φ ∈ C 2(Ωε),
ẑ = (x̂ , ŷ) ∈ Ωε and maxΩε

(u? − φ) = (u? − φ)(ẑ), we must have :

if ẑ ∈ Ωε,
F (D2φ(ẑ),Dφ(ẑ), u?(ẑ), ẑ) ≤ 0 (3)

if ẑ ∈ ∂Ωε \ ((∂LΩε ∩ ∂TΩε) ∪ (∂LΩε ∩ ∂BΩε)) we have either
(3) or

γ(ẑ) · Dφ(ẑ) ≤ β (4)

if ẑ ∈ ∂LΩε ∩ ∂BΩε, we have either (3) or γL(ẑ) ·Dφ(ẑ) ≤ βL,
or γ−(ẑ) · Dφ(ẑ) ≤ β−(ẑ) ,

if ẑ ∈ ∂LΩε ∩ ∂TΩε., we have either (3), or
γL(ẑ) · Dφ(ẑ) ≤ βL or γ+(ẑ) · Dφ(ẑ) ≤ β+(ẑ)
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Definition of Viscosity Solutions

A bounded function u is a viscosity subsolution if u? its upper
continuous envelope satisfies: whenever φ ∈ C 2(Ωε),
ẑ = (x̂ , ŷ) ∈ Ωε and maxΩε

(u? − φ) = (u? − φ)(ẑ), we must have :

if ẑ ∈ Ωε,
F (D2φ(ẑ),Dφ(ẑ), u?(ẑ), ẑ) ≤ 0 (3)
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Definition of Viscosity Solutions

Replacing “max”, “≤”, and “upper semicontinuous envelope”,
with “min”, “≥”, and “lower semicontinuous envelope”
respectively, in the above condition yields the right definition of
viscosity supersolution. Viscosity solutions are functions which are
both viscosity sub and super solutions.
With this definition we do not require the viscosity solution to be
continuous.
Because the conditions are on the upper and lower semicontinuous
envelope not directly on the solution. The reason being that with
corner we don’t have comparison principle.
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Main existence result (Fixed ε).

Proposition

Assume that F is proper. Then, there exist positive constants ε1

and C0 such that for each 0 < ε < ε1, there is a viscosity solution
uε to

F (D2uε,Duε, uε, (x , y)) = 0 in Ωε

γ+
1 · Dxu

ε + uεy = β+ on ∂TΩε

γ−1 · Dxu
ε − uεy = β− on ∂BΩε,

γ · Duε = β, on ∂LΩε

and furthermore any solution uε will satisfy supΩε
|uε| ≤ C0.
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Bibliography and other projects

Consider the case where g is not continuous, (disegno)

Ωε = {(x , y), x ∈ (0, 1), 0 < y < ε(a(x) + b(x)g( xε )}, g

periodic.

Different shapes of thin domains

More general multi-scale and homogenization problem

We want to recall the works of Arrieta, Pereira, Nogueira,
Nakasato, Villanueva-Pesqueira.
But also we would like to understand the relationship with the
results on ”thin domains” in other contest. e.g. the work of
Percivale, Buttazzo, Acerbi (1988) and the sequent ones, or
Fonseca, Francfort, G. Leoni..... on ”thin elastic films”
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Merci de votre attention
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