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The classical result of Hale and Raugel in thin domains studies the
asymptotic behaviour, as € goes to zero, of u., solution of

—Au; + u. = f(x,y) in Q.
81/E u:=0 on 0f).

where Q. = {(x,y) ERVN xR : x€Q, 0 <y < eg(x)}, for some

y=¢g (x)

g such that 0 < igfg <supg < 00.
Q
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Hale and Raugel (1989) have proved:

H-R

If g € C3(Q) then u. converges to u, solution of

—(Au, + %) +uo =f(x,0) in Q
Oyug =0 on 0N.

This result has been extended in a wide variety of related problems
all in a variational setting:

@ Arrieta, PereiraHomogenization in a thin domain with an
oscillatory boundary J. Math. Pure Appl (2011)

@ Arrieta, Nogueira, Pereira.... oscillatory boundaries
Comput. Math. Appl. (2019)

o Arrieta, Villanueva-Pesqueira..... doubly weak oscillatory
boundary, Preprint 2024

o Arrieta, Nakasato, Villanueva-PesqueiraHomogenization in
3D thin domains .... Preprint 2024
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Dg - D
—Au. + u. = f(x,y) = —(Auo + Fe Hlo

)+ up = f(x,0)
Where does the "new term” come from? If we make the change of
variables X = x, and Y = yeg(x) i.e. Q. becomes the flat
cylindrical set @ = Q x (0,1) then the equation becomes

—édiv(BEDVS) +ve=1f in Q
Oyve =0 on 0Q
with
gDv — yv,Dg

B:Dve = { —yDg - Dv + E‘nyg(l +€2\Dg\2y)
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So using the weak solution formulation:

Dv,

1 D
/ (*Bsts-Dso—Baizgw)dxdyﬂL / Vepdxdy = / f(x, eg(x)y)pdxd)
Q8 g Q Q

By a priori bounds, d,v. — 0 and hence the limit equation
becomes

Dv, - D,
/(Dvo Dy — Vog(p)dx—i-/
Q g

vogodx_/ f(x,0)pdx.
Q Q

But if the equation is not variational, what happens? how do we
recover the limit equation. Use L. C. Evans test function approach.
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Heuristic

Where does the term come from without integration by part?
Recall that for v.(x,y) := u-(x,eg(x)y):

—tr(Dzue) + u. = f becomes — tr(é€D2v5) +v.=f.
Using standard a priori estimate, we can suppose that

Oyyve < Ce2.
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Heuristic

Where does the term come from without integration by part?
Recall that for v.(x,y) := u-(x,eg(x)y):

—tr(Dzue) + u. = f becomes — tr(é€D2v5) +v.=f.
Using standard a priori estimate, we can suppose that
Oyyve < Ce2.

So we may use the following ansatz:

2
ve(x,y) = w(x) + 52k(x)y? + o(e?).

Substituting the ansatz in the equation, we let, formally € go to
zero, after a tedious but simple computation it is easy to see that

we obtain
D?w(x) 0
—tr( 0 k(x )+w="f.
2
g%(x)
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We still don't know what is k(x)! Using the ansatz, in the
Neumann condition on the "top” boundary, gives

De(x) - [Dw(x) + 20K(x) 3] = <01+ <2 De(x)]
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We still don't know what is k(x)! Using the ansatz, in the
Neumann condition on the "top” boundary, gives

De(x) - [Dw(x) + 20K(x) 3] = <01+ <2 De(x)]

Passing to the limit we find

k(x) = g(x)Dg(x) - Dw(x) i.e. K _

i.e. the limit equation is indeed.

D?w 0 .
—tr(( 0 Dg-DW/g>)+W—f(X’O) in Q,

9w —0 on 0.
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In the work | am presenting we consider, a larger class of domains,
more general boundary conditions and a much wider class of
operators.



Oblique boundary condition-BBI. The domain €.

In the work | am presenting we consider, a larger class of domains,
more general boundary conditions and a much wider class of
operators.
For e small, Q. = {(x,y) € QxR : eg~(x) <y <eg™(x)},
Q c RM. We denote by

@ 07, the top boundary i.e. y = eg™(x),

@ 0pf). the bottom of the domain i.e. y =¢g~

@ 0., the lateral boundary i.e. 9Q x [eg™,eg™].

We suppose that g= ¢ C'(Q) and g~ < g+.
Because of the corners, in the framework of viscosity solutions, we
will need to treat with special care the boundary.
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Oblique boundary condition-BBI. The operator.

We treat fully nonlinear equations in thin domains i.e.
F(D?u, Du,u,(x,y)) = 0 in Q.

where F : S(N 4+ 1) x RV*! x R x Q. — IR is a proper functional
in the sense of the User's guide

FecC(S(N+1) xRN xR x Q.,R),
(H2)
F(X,p,r,(x,y)) < F(Y,p,s,(x,y)) for r <s, and Y < X.

Furthermore, we strengthen the monotonicity condition on F in
the above as follows.

(H3) There exists a > 0 such that

a(r—s) < F(X7p7rv(xv)/))_F(X7p75>(X>Y))

for r > s and (X, p, (x,y)) € S(N +1) x RN+1 x Q..
We shall call these operators " proper”.
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The boundary condition
QL ={(xy) €EQXR : g (x) <y <eg'(x)}

In general we can treat operators that are degenerate elliptic or non
linear, but for clarity sake, in this talk, | will begin by presenting
the results for F(D?u, u) = —Au + u i.e. we consider problem
—Au+u=Ff in€,
v-Du=2g on 082

Where the boundary condition will be meant in the viscosity sense
and will be written:

vt Duf =B ond7Q. and ~ - Du° =" on 0gQ.,
YL Du€ = ﬁL on a[_QE.
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Oblique boundary condition

Concerning conditions
Ayt Duf =B on9d7rQ. and ~ -Duf =" on 0gQ.,
we require that ¥& - 1. > 0. Hence if we write
+

vE = () with y1(x,y)t € RV and 7a(x,y)* € R

Then without loss of generality, since j:vgt > 0, we can choose
v = +1.

Vf-DXuE—Fu; =37 ond7Q. and Y1 -Dxuf—uy, = 7 on 9p12,
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We assume that for some k* € C(Q,IR") and /* € C(Q,R),

{ 7 (% y) =97 (x,0) + kE(x)y + o(ly])
BE(x,y) = BE(x,0) + IF(x)y + o(lyl),

as y — 0, where o(|y|)/|y| — 0 uniformly 025 as y — 0.
A crucial assumption on v* and 8% for x € Q

Bt (x,0) = —B7(x,0) := Bo(x) and ’)/1+(X,0) = —7; (x,0) := 7o(x).
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Under the above conditions on the boundary
Theorem (I.B., A. Briani, H. Ishii)

Let u® be a viscosity solution to —Awu® + v = f in €. with
boundary conditions - Du® = 3 as in (17) for £ € (0,ep]. Then,
u® converges to u® a solution in Q of

—Au — D?u vo(x) - Yo(x) — b(x) - Du — c(x)u + u = f(x,0).
Satisfying . (x,0) - u = 51(x,0) on 0. Furthermore

lim  max_|u°(x,y) — u®(x)| = 0.
e—0* ()Qy)@ﬂig

The values of b(x) and c(x) will be written in the next slide.
For general operators F, for which we require only to be proper,
the convergence may not be uniform.
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Precisely
1
b :ODOT—i Tkt k™
(%) = 70(D7o) g_g_(g e k), ()
()= 70 Dot ("1 g 1). (@)
g — 8
Recall that v+ = (755, £1),

{ (X, y) = E70(x) + kE(x)y + o(ly|)
BE(x,y) = £Bo(x) + IE(x)y + o(|yl),
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In the general case, if we consider the problem (P.)
F(D?u., Du., u.,(x,y)) =0in Q., v-Du. = 3 on 0Q.,

and we call S; the set of viscosity solutions of this problem.
The limit equation will be defined through
G:S(N) xRN xR xQ— IR by

G(D?u,Du,u,x) = F(A+ B+ C,(Du, 3o — 7o - Du), u,(x,0)),

where
- D%u —D?uv,(x)T
A = (—’yo(XSDzu %(E%D;u ’y(o(;;)TT> ’
B —(DuD~,(x
B = (—DuD’yo(x) b(x) - Du > '

¢ =(on 5 )

So we call (P,), the problem
G(D?u, Du,u,x) =0in Q, v, - Du= B(x,0) on 9.
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Theorem (I.B., A. Briani, H. Ishii)

Assume that F is proper, that Q., g*, v and § satisfy the
conditions described above. Let S. be the set of viscosity solutions
to the problem (P.) If we define the half relaxed limits u™ by

ut(x) = lim sup{u(&,n): (6,1) €Q., 0<e<r, |€—x|<r},

r—0+t ueS.

u”(x) = lim |nf{( n):(En) €, 0<e<r, [E—x|<r},

r—0t ueS,

which are bounded functions on Q. The functions u* and v~ are a
viscosity sub and super solutions to problem (P,) , respectively.
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Theorem (I.B., A. Briani, H. Ishii)

Assume that F is proper, that Q., g*, v and § satisfy the
conditions described above. Let S. be the set of viscosity solutions
to the problem (P.) If we define the half relaxed limits u™ by

ut(x) = lim sup{u(&,n): (6,1) €Q., 0<e<r, |€—x|<r},

r—0+ ueSs,

u”(x) = lim |nf{( n):(En) €, 0<e<r, [E—x|<r},

r—0t ueS,

which are bounded functions on Q. The functions u* and v~ are a
viscosity sub and super solutions to problem (P,) , respectively.

Corollary (I.B., A. Briani, H. Ishii)

If (P,) satisfies the comparison principle, u™ = u™ = u, and the
convergence of u. to u, is uniform.
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The crucial assumption on 4+ and % for x € Q

BT(x,0) = —B7(x,0) := Bo(x) and 7 (x,0) = —v1 (x,0) := yo(x).



What happens if the crucial hypothesis is not satisfied

The crucial assumption on v and 8% for x € Q

BT (x,0) = —B7(x,0) := Bo(x) and 77 (x,0) = —v; (x,0) := 7o(x).
We consider the very simple problem:

—u,+u=1 in(0,1) x (0,¢),
uy(x,e) =1, —uy(x,0) =0, u(0,y)=0, u(l,y)=0

for which the hypotheses on 3% and 3~ are not satisfied.

Isabeau Birindelli Thin domains



What happens if the crucial hypothesis is not satisfied

The crucial assumption on v and 8% for x € Q
B1(x,0) = —B7(x,0) := Bo(x) and ’yf‘(x, 0) = —; (x,0) == 7o(x).
We consider the very simple problem:

—u,+u=1 in(0,1) x (0,¢),
uy(x,e) =1, —u,(x,0) =0, ux(0,y) =0, ux(l,y)=0
y y

for which the hypotheses on 3% and 3~ are not satisfied. The
solution is given by

1
v(x,y) = ———— (/" +e7) +1,

e —e

which is not bounded as ¢ goes to zero.
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Going back to the result of Hale and Raugel i.e. when the
"oblique” condition is just the Neumann boundary condition

£

u
ove

~Au+u="Ffin QR and =0 on IQIR,
where QHR = {(x,y) e RN xR : x € Q, 0 <y < eg(x)}, and
v. denotes the outward (unit) normal to QR

Hence with g~ =0, 7, = 0 and kT(x) = l?j%):
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Going back to the result of Hale and Raugel i.e. when the
"oblique” condition is just the Neumann boundary condition

£

u
ove

~Au+u="Ffin QR and =0 on 0QFR,
where QHR = {(x,y) e RN xR : x € Q, 0 <y < eg(x)}, and
v. denotes the outward (unit) normal to QR

Hence with g~ =0, 7, = 0 and k*+(x) = 281

. . : g(x)
the limit equation will be:
—tr Dw 0 +w =1f(x,0) inQ
0 Dg-Dw/g W= TG )N 25
%—‘fj’ =0 on 09Q.

Even in the case of the Laplacian the result is stronger then Hale
and Raugel, because they require g to be C3
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Examples in the Neumann case

We give two very simple examples in the degenerate case with
QIR = {(x,y) ERN xR : x€Q, 0<y <eg(x)}.
Let u. be the solution of

~82,(us) + ue = F(x,y) in QR 9, u.=0on OQHR.
Then, u. converges to u, solution of a first order equation
precisely:
Dg - Du,

2 + uo = f(x,0) in Q, Oy, =0 on 0R.
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Examples in the Neumann case

We give two very simple examples in the degenerate case with
QIR = {(x,y) ERN xR : x€Q, 0<y <eg(x)}.
Let u. be the solution of

~82,(us) + ue = F(x,y) in QR 9, u.=0on OQHR.
Then, u. converges to u, solution of a first order equation
precisely:
Dg - Du,
=

Instead, if u. is the solution of

+ uo = f(x,0) in Q, Oy, =0 on 0R.

~ 02 (ue) + u- = f(x,y) in QIR dy.uc =0 on 9QHR
it will converge to u, solution of

—(Uo)xyx, + Uo = f(x,0) in Q, Oyuo =0 on 0Q.
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Pucci operator: Uniformly elliptic but fully nonlinear.
Let 0 < A <A

1

~M{ jue+u. = f(x,y) in QPR and au =0 on 9QFR
: V.
where
MIA(D?u) = sup (trA(D’u)):=A> e&+AD e
’ AISA<AI <0 >0

where e; are the eigenvalues of D?u.
In this case the limit equation becomes:

_MIA(D2W(X)) A (Dg(z)('f)w(x)> + /\< (g)()?)W(X)> +

+w(x) = f(x,0).
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Heuristic 2: For the oblique condition v - Vu = f

Intrinsic approach, a la Evans, is to consider the development:

u*(x,y) = u®(x) +eut(x,y/e) + 2P (x,y/e) + -,
so that

2,0 1\T
pw = (g L) e
Uy, € uyy+uyy

Duf = (Dcu®, uy) + o(1), v® = u®(x) + o(1).

Hence a natural ansatz here, to obtain a PDE for u® = lim._,g+ u°,
is to impose that

uy, (x,y) =0 for x €Q, g7 (x) <y < g (x).

To achieve this, we assume that there is a function v : Q - R
such that
ul(x,y) = v(x)y for ycIR.
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Using now the development of the boundary conditions:

{ (%, y) =7 (x,0) + kE(x)y + oly|)
BE(x,y) = BE(x,0) + IF(x)y + o(|yl)-

From the ansatz we obtain, by imposing that the zero order term
in the expansion in ¢ of the boundary condition is zero:

0= 7 (x,0) - Du’(x) = v(x) — A*(x,0).
It yields:
v(x) = B*(x,0) = 77 - Du®(x) = =B~ (x,0) + 71 - DuO(x).
This is well defined if condition
BT (x,0) = —B7(x,0) := Bo(x) and 7 (x,0) = —v; (x,0) := 7o(x).
holds, and it determines the value for v as
v(x) == Bo — 70 - Du’(x),
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uF(x,y) = u(x) +eut(x,y/e) + 2uP(x,yfe) + -+,

The value of u1(x,y) = (Bo — 7o - Du®(x))y has been found just
by considering null the zero order term in the expansion in ¢ of the
boundary condition.

Similarly, in order to determine u? in terms of u,..etc..we need to
impose that the first order term in the expansion in ¢ of the
boundary condition is zero. And we obtain:

P(x,y) = 5y — 8 ()W) + 50y — 8 ()Pw (x)

where

() — g* e A N = SN o | .
Wi (x) = g =gy ) k00 Dutx) F 9 - D),
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With the knowledge of u' and u?, we are now in a position to
guess the limit equation since

e _ (Dfuo (D, uy)" >+O(1)

1
DXuy €Uy, +u

Duf = (Deu®, u}) + o(1), u€ = u%(x) + o(1).
Of course now that we have the Ansatz
e _ 0 1 2 2
u(x,y)_u(x)+5u (X,y/€)+€U(X,y/€)+"',

with u1(x,y) = (Bo — Yo - Du®(x))y and

P(x,y) = 3y — & ())*wh (x) + 3(y — g7 (x))*w™(x). The
Evans test function approach consist, in a very simplified sense, to
construct sub and super solutions to the equation at € > 0, by
replacing, in the ansatz, u, by the test functions of the limit
equation. And then proceed.....
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The presence of corners with oblique boundary conditions require
some attention. Let us give the definition of viscosity solution for
problem:

F(D?u, Du, u,(x,y)) =0 in Q.

satisfying condition
v-Du=pBon 0f..
Intending
vt Duf =BT ond7Q. and ~ - Duf =B~ on 0.,

v - Duf = B, on 0.9..

We suppose that
7 € C(Q x [-1,1],IRN+1) 4, € C(09 x [-1,1], RN*1) be such
that the right structural conditions are satisfied.
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Definition of Viscosity Solutions

A bounded function u is a viscosity subsolution if u* its upper
continuous envelope satisfies: whenever ¢ € C2(€.),
2 =(%,9) € Q: and maxg(v* — @) = (u* — ¢)(2), we must have :

o if 2 €€,
F(D?*¢(2), Dp(2), u*(2),2) <0 (3)
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Definition of Viscosity Solutions

A bounded function u is a viscosity subsolution if u* its upper
continuous envelope satisfies: whenever ¢ € C2(€.),
2 =(%,9) € Q: and maxg(v* — @) = (u* — ¢)(2), we must have :

o if 2 €€,
F(D?*¢(2), Dp(2), u*(2),2) <0 (3)

o if 2€ 0\ (0L NOT) U (L2 NOBL)) we have either
(3) or
1(2)-Dg(2) < 8 (4)

Isabeau Birindelli Thin domains



Definition of Viscosity Solutions

A bounded function v is a viscosity subsolution if u* its upper
continuous envelope satisfies: whenever ¢ € C2(€.),
2 =(%,9) € Q: and maxg(v* — @) = (u* — ¢)(2), we must have :

o if 2 €€,
F(D?*¢(2), Dp(2), u*(2),2) <0 (3)

o if 2€ 0\ (0L NOT) U (L2 NOBL)) we have either
(3) or
1(2)-Dg(2) < 8 (4)

e if 2 € JQ. NI, we have either (3) or y.(2) - Dp(2) < fy,
or v~ (2)-Dp(2) < B (2) .
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Definition of Viscosity Solutions

A bounded function v is a viscosity subsolution if u* its upper
continuous envelope satisfies: whenever ¢ € C%(Q.),
2 =(%,9) € Q: and maxg(v* — @) = (u* — ¢)(2), we must have :

o if 2 €€,
F(D?*¢(2), Dp(2), u*(2),2) <0 (3)

o if 2€ 0\ (0L NOT) U (L2 NOBL)) we have either
(3) or
1(2)-Dg(2) < 8 (4)

e if Z € 0.0 N OB, we have either (3) or v,(2) - Dp(2) < By,
or v (2)-Do(2) < B(2) ,

e if 2 € O.Q N O12.., we have either (3), or
YL(2) - D(2) < B or vH(2) - Dp(2) < BH(2)
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Definition of Viscosity Solutions

Replacing “max”, “<", and “upper semicontinuous envelope”,
with “min”, “>", and “lower semicontinuous envelope”
respectively, in the above condition yields the right definition of
viscosity supersolution. Viscosity solutions are functions which are
both viscosity sub and super solutions.

With this definition we do not require the viscosity solution to be
continuous.

Because the conditions are on the upper and lower semicontinuous
envelope not directly on the solution. The reason being that with
corner we don't have comparison principle.
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Main existence result (Fixed ¢).

Proposition

Assume that F is proper. Then, there exist positive constants 1
and Cy such that for each 0 < € < €1, there is a viscosity solution
u® to

F(D?u?, Duf, %, (x,y)) =0 in Q.

Vi Deuf + uf = BT on Q.
'71_ - Dyt — U}E/ = /8_ on aBQaa
v - Dut = 3, on O£,

and furthermore any solution v will satisfy supg-|u®| < Co.
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Bibliography and other projects

e Consider the case where g is not continuous, (disegno)
o Q. ={(x,y),x €(0,1),0 <y <e(a(x) + b(x)g(%)} &

hg

periodic.
@ Different shapes of thin domains
@ More general multi-scale and homogenization problem
We want to recall the works of Arrieta, Pereira, Nogueira,
Nakasato, Villanueva-Pesqueira.
But also we would like to understand the relationship with the
results on "thin domains” in other contest. e.g. the work of

Percivale, Buttazzo, Acerbi (1988) and the sequent ones, or
Fonseca, Francfort, G. Leoni..... on "thin elastic films"
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Merci de votre attention

Isabeau Birindelli Thin domains



